Correlation Cheat Sheet

In this chapter you will learn about the product moment correlation coefficient and the Spearman's rank correlation coefficient. You will also be familiar with how to carry out hypothesis tests to assess correlation.

Product Moment Correlation Coefficient (PMCC)

The product moment correlation coefficient (PMCC), or r, tells you whether there is a linear correlation between two continuous variables. It is a suitable measure when both variables are normally distributed. It can be calculated using the formula below, which can be found in the formula booklet.

$$= \frac{S_{xy}}{\sqrt{S_{xx} \times S_{yy}}}$$

The value of r can range from -1 to 1. The sign shows whether the correlation is positive or negative, and the number tells you how strong the correlation is. Here are some examples of interpretation of r:

Interpretation
Perfect negative linear correlation
Strong negative linear correlation
No correlation
Weak positive linear correlation
Perfect positive linear correlation

Note: When interpreting correlation always refer back to the context of the question.

Sometimes data can come is huge and messy numbers, and they can be coded to make calculations less complicated. Coding the data does not affect correlation as long as the coding is linear.

Example 1: A teacher wants to know whether there is a correlation between the marks from the physics exam and the marks from the chemistry exam. The marks for 10 students are recorded in the table below.

	Physics (p)	73	89	56	55	85	98	88	63	47	93
Γ	Chemistry (c)	68	91	40	62	79	94	76	71	52	78
Y	You can use $\Sigma p = 747$, $\Sigma c = 711$, $\Sigma c^2 = 53031$ and $\Sigma pc = 55499$ and $S_{pp} = 3010.1$										

Find the product moment correlation coefficient.

,	
Find S _{cc} .	$S_{cc} = \Sigma c^{2} - \frac{(\Sigma c)^{2}}{n}$ $S_{cc} = 53031 - \frac{(711)^{2}}{10}$ $= 2478.9$
Find S_{pc} .	$S_{pc} = \Sigma pc - \frac{\Sigma p \Sigma c}{n}$ $S_{pc} = 55499 - \frac{747 \times 711}{10}$ $= 2387.3$
Find r using the formula.	$r = \frac{S_{pc}}{\sqrt{S_{pp} \times S_{cc}}} = \frac{2387.3}{\sqrt{3010.1 \times 2478.9}} = 0.874 (3s, f_{c})$

ii)	Giving a reason, state whether there is a correlation between the marks for Physics and
	Chemistry.

Spearman's Rank Correlation Coefficient

Spearman's Rank Correlation Coefficient can be used as an alternative when PMCC is not a suitable measure. This might be due to :

- Variables do not seem to have a linear correlation
- For data which are not continuous •
- For data which do not have a normal distribution

The two sets of data are given a rank starting from 1. Rank 1 can be assigned to either the highest or lowest value, but you must rank both sets in a consistent way (i.e., highest as rank 1 in both or lowest as rank 1 in both). If more than 1 data has the same value, the mean of the ranks is assigned. For example, the 5th and

6th rank are tied, so the rank assigned to both will be
$$\frac{5+6}{2} = 5.5$$
.

The Spearman's rank correlation coefficient, r_s , can be calculated using the following formula:

$$r_s = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)}$$

where d = difference in ranks for each observation n = number of pairs of observation

The interpretation of the Spearman's rank correlation is similar as the PMCC:

r_s	Interpretation
-1	Rankings are exactly opposite
-0.8	Rankings are mostly in disagreement
0	No correlation
0.4	Rankings agree to some extent
1	Rankings agree with each other completely

Remember to look back at the question and look at the context.

Example 2: In a competition, participants were ranked by 2 different judges, which are recorded in the table below

	А	В	С	D	Е	F	G	Н	I	J
Judge 1	6	2	10	1	7	5	9	3	4	8
Judge 2	4	6	10	2	8	5	7	1	3	9

i) Using the Spearma	n's ran		1	<u> </u>	1		he jud	<u> </u>		th ead	ch othe	er.	
Calculate the difference in ranks (d) and their squares (d^2) .	$\frac{d}{d^2}$	A 2 4	B -4 16	C 0 0	D -1 1	E -1 1	F 0 0	G 2 4	H 2 4	 1 1	J -1 1		Find C
Find the sum of d^2 .	$r_{\rm c} =$				- 0 + 1	+1+	- 0 + 4	+ 4 +	+1+:	1 = 3	2	_	Find S_{xx} .
Substitute d^2 into the formula to find r_s .	=	$1 - \frac{1}{1}$ 1 - 0	$ \frac{6\Sigma d^2}{(n^2 - 6 \times 3)^2} \\ \frac{0}{192} \\ \frac{0}{193} \\ \frac{0}{3} \\ $	39									Find S_{yy} .
Interpret your value of r_s .	The 2	2 judg	es are i	mostly	/ in agr ation c					as the			Calculate your sum
i) Judge 1 decided to the Spearman's rar	•			•	•		•					-	Chackwhathar
Compare how similar the ra	anks giv	ven						Ε	G				Check whether you the critical region.
by the two judges to partici and G are before and after	· · · · · · · · · · · · · · · · · · ·	E	· ·	1 (be 1 afte				7 9	9 7				Interpret your resu

change. Judge 2 Since the ranks are more similar, d The $r_{\rm s}$ value will increase therefore the correlation will will decrease as well as Σd^2 be stronger. The judges agree to a greater extent.

Hypothesis Testing

Hypothesis testing for zero correlation can be used to infer whether a correlation is likely in the population, based on whether a correlation is evident in the sample. Both PMCC and Spearman's rank correlation coefficient can be used, depending on which is more suitable for the data given.

test, it is $H_0: \rho \neq 0$.

You can find the critical values for the given significance level and sample size from a table in the formula booklet. There is a table for PMCC and another for Spearman's rank correlation coefficient.

teacher's belief is true at a significance level of 0.05.

Hours of sleep (x)	7	8.5	9		8	6	8	7.5		
Exam score (y)	67	95	82		78	72	89	90		
You can use $\Sigma x = 54$	$x, \Sigma y = 5$	573, Σ $x^2 =$	422.5	5, Σງ	$v^2 = 4752$	7 and Σxy	= 4457.	5.		
Write down your H_0 a question does not speasociation we are test tailed test.	ecify what	kind of	$H_0: \rho = 0$ $H_1: \rho \neq 0$							
Since this is a two-tail divide the significance significance level at ea	e level by		$0.05 \div 2 = 0.025$ \therefore significance level at each tail: 0.025							
Find the critical region 0.025 and sample size	-				$= \pm 0.7857$					
formula booklet.				Crit	ical region:	> 0.7857 a	and < -0.7	/857		
Find S_{xy} .					= 37.214	$\frac{\sum \sum y}{n} = \frac{54 \times 5}{7}$	73			
Find S_{xx} .				$S_{xx} = \Sigma x^2 - \frac{(\Sigma x)^2}{n}$ $S_{xx} = 422.5 - \frac{54^2}{7}$ = 5.929						
Find S _{yy} .				$= 5.929$ $S_{yy} = \Sigma y^2 - \frac{(\Sigma y)^2}{n}$ $S_{yy} = 47527 - \frac{(573)^2}{7}$ $= 622.857$						
Calculate your summa	ary statist	ics.		$r = \frac{S_{xy}}{\sqrt{S_{xx} \times S_{yy}}}$ = $\frac{37.214}{\sqrt{5.929 \times 622.857}}$ = 0.612 (3s. f.)						
Check whether your s the critical region.	ummary s	statistic falls	s in	0.612 < 0.785						
Interpret your results.				Not in critical regionAccept H_0 . 0.612 is not in the critical region.The teacher's belief is not supported at asignificance level of 0.025.						

147.10 1 77 1 77
Write down your H_0 and H_1
question does not specify w
association we are testing f
tailed test.
Since this is a two-tailed tes
divide the significance level
significance level at each ta
Find the critical region for s
0.025 and sample size: 7 us
formula booklet.

	Find S_{xx} .
	Find S_{yy} .
5	Calculate your summary sta
	Check whether your summa

Edexcel Further Stats 2

The null hypothesis is always $H_0: \rho = 0$. It assumes that there is no correlation.

The alternative hypothesis for a one-tailed test is either H_0 : $\rho < 0$ or H_0 : $\rho > 0$. For a two-tailed

Example 3: A teacher believes that the hours of sleep students have are associated with their exam performance. Using the data from the table below, perform a hypothesis test to show whether the

