Probability Generating Functions

Questions

Q1.

The discrete random variable *X* has probability generating function

$$G_X(t) = k \ln \left(\frac{2}{2 - t} \right)$$

where k is a constant.

(a) Find the exact value of k

(1)

(b) Find the exact value of Var(X)

(7)

(c) Find P(X = 3)

(4)

(Total for question = 12 marks)

Q2.

A discrete random variable X has probability generating function given by

$$G_X(t) = \frac{1}{64} (a + bt^2)^2$$

where a and b are positive constants.

(a) Write down the value of P(X = 3)

(1)

Given that $P(X = 4) = \frac{25}{64}$

(b) (i) find P(X = 2)

(7)

(ii) find E(X)

(3)

The random variable Y = 3X + 2

(c) Find the probability generating function of Y

(2)

(Total for question = 13 marks)

Q3.

The probability generating function of the random variable *X* is

$$G_X(t) = k(1 + 2t)^5$$

where k is a constant.

(a) Show that $k = \frac{1}{243}$

(2)

(b) Find P(X = 2)

(c) Find the probability generating function of W = 2X + 3

The probability generating function of the random variable Y is

$$G_{\underline{Y}}(t) = \frac{t(1+2t)^2}{9}$$

Given that X and Y are independent,

(d) find the probability generating function of U = X + Y in its simplest form.

(2) Lieu coloulus to find the value of Var(I)

(e) Use calculus to find the value of Var(U)

(6)

(2)

(Total for question = 14 marks)

Q4.

The probability generating function of the discrete random variable X is given by

$$G_X(t) = k(3 + t + 2t^2)^2$$

(a) Show that $k = \frac{1}{36}$

(2)

(b) Find P(X = 3)

(2)

(c) Show that $Var(X) = \frac{29}{18}$

(8)

(d) Find the probability generating function of 2X + 1

(2)

(Total for question = 14 marks)

<u>Mark Scheme</u> – Probability Generating Functions

Q1.

Qu	Scheme	Marks	AO
(a)	$G(1) = 1 \implies k \ln 2 = 1$ so $k = \frac{1}{\ln 2}$	B1	2.1
(b)	$\left\{ G(t) = \frac{1}{\ln 2} \left[\ln 2 - \ln(2 - t) \right] \right\} \implies G'(t) = \frac{1}{\ln 2} \left[\frac{1}{2 - t} \right] \text{ or } \frac{1}{\ln 2} (2 - t)^{-1}$	(1) M1 A1	2.1 1.1b
	$[E(X) =] G'(1) = \frac{1}{\ln 2}$	A1	1.1b
	$G''(t) = \frac{1}{\ln 2} \times \left[\frac{1}{(2-t)^2} \right]$	M1 A1	2.1 1.1b
	$Var(X) = G''(1) + G'(1) - [G'(1)]^2 = \frac{1}{\ln 2} + \frac{1}{\ln 2} - \left(\frac{1}{\ln 2}\right)^2$	M1	2.1
	$=\frac{1}{\ln 2}\left(2-\frac{1}{\ln 2}\right)$	A1	1.1b
(c)	$P(X=3) = \text{coefficient of } t^3$ by Maclaurin need $G'''(0)$	(7) M1	3.1a
	$G'''(t) = \frac{1}{\ln 2} \frac{2}{(2-t)^3}$	A1ft	1.1b
	$P(X=3) = \frac{G'''(0)}{3!}$	M1	3.2a
	$=\frac{\frac{1}{4\ln 2}}{6} = \frac{1}{24\ln 2} = 0.0601122$ awrt <u>0.0601</u>	A1	1.1b
	6 24ln 2	(4) (12 m:	arks)
	Notes		
(a)	B1 for finding k (must be exact)		
(b)	1 st M1 for an attempt to differentiate $G(t)$ e.g. $A(2-t)^{-1}$ (o.e.)		
	1st A1 for a correct first derivative (condone k or use of $\frac{1}{\ln 2}$ = awrt 1.44)		38
	2^{nd} A1 for correct E(X) or G'(1) (allow awrt 1.44 calc: 1.442695but not k) seen any	where
	2^{nd} M1 for attempting second derivative (ft their $G'(t)$)		
	3^{rd} A1 for a correct 2^{nd} derivative (condone k or use of $\frac{1}{\ln 2}$ = awrt 1.44) 3^{rd} M1 for a correct method for $Var(X)$ (some substitution into the correct forms	.1\	
	4 th A1 for $\frac{1}{\ln 2} \left(2 - \frac{1}{\ln 2} \right)$ o.e. but must simplify i.e. collect like terms	на)	
	[Mark final answer – penalise incorrect NB 0.8040211 is A0 unless exact answer seen	log work	etc]
(c)	1st M1 for a suitable strategy to solve the problem (finding link with Maclauri Need mention of coefficient of t ³ and [G'''(t)] or G'''(0)](condone G'''	0.500	
	1^{st} A1ft for 3^{rd} derivative, ft their 2^{nd} derivative in (b) (provided $G''(t)$ not con		
	Correct G'''(t) or G'''(0) scores 1st M1 1st A1ft 2nd M1 for translating Maclaurin to probability (a correct expression)		
	$2^{nd} A1$ for $\frac{1}{24n2}$ or awrt 0.0601		
ALT	Log series 1st M1 attempt to write $G(t)$ in suitable form as far as: $k[\ln 2 - \ln(2[1 + \log t])]$	$-\frac{t}{2}])]$	
	1^{st} A1 reaching $-k\ln(1-\frac{t}{2})$		
	2^{nd} M1 use of $-\ln(1-x)$ series (some correct substitution) NB $G(t) = \frac{1}{\ln 2} \left(\frac{t}{2} + \frac{t}{2}\right)$		

Q2.

Question	Scheme	Marks	AOs
(a)	$P(X=3) = \underline{0}$	B1	1.1b
		(1)	
(b)(i)	Coefficient of $t^4 = \frac{1}{64}b^2$	M1	2.1
	$\frac{1}{64}b^2 = \frac{25}{64}$	M1	1.1b
	b = 5 (reject $b = -5$ since $b > 0$)	A1	2.3
	$G_X(1) = 1$ $\frac{1}{64}(a + 5'')^2 = 1$	M1	2.1
	a = 3 (reject $a = -13$ since $a > 0$)	A1	1.1b
	$P(X=2) = \text{coefficient of } t^2 = \frac{1}{64}(2ab)$	M1	3.4
	$=\frac{15}{32}$	A1	1.1b
		(7)	
(ii)	$E(X) = G_X'(1)$	M1	2.1
	$G'_X(t) = \frac{2}{64}("3" + "5"t^2) \times "10"t$ or $G'_X(t) = \frac{1}{64}("60"t + "100"t^3)$	M1	1.1b
	$G_X'(1) = 2.5$	A1ft	1.1b
		(3)	
(c)	$G_Y(t) = t^2 G_X(t^3) [= \frac{t^2}{64} (a + b(t^3)^2)^2]$	M1	3.1a
	$G_{Y}(t) = \frac{t^{2}}{64} ("3" + "5" t^{6})^{2}$	A1ft	1.1b
2		(2)	
		(1)	3 marks

	Notes
(a)	B1: 0 (Since there is no term in t^3)
(b)(i)	M1: Realising that $\frac{1}{64}b^2$, the coefficient of t^4 , is needed
	M1: Equating their coefficient of t^4 to $\frac{25}{64}$ with an attempt to find b
	A1: $b = 5$ only
	M1: Realising that $G_X(1) = 1$ is required
	A1: $a = 3$ only
	M1: Finding coefficient of t^2 with their $a > 0$ and $b > 0$
	A1: $\frac{15}{32}$ (condone awrt 0.469)
(b)(ii)	M1: Realising $G'_X(1)$ is needed
	M1: Attempt to differentiate $G_X(t)$ with their values of a and b
	A1ft: 2.5 (ft (3sf) their values of a and b, $a > 0$ and $b > 0$) $E(X) = \frac{ab+b^2}{16}$
	Alternative:
	M1: Realising $X = 0$, 2 and 4 only
	M1: $[0 \times P(X=0)] + 2 \times P(X=2) + 4 \times P(X=4)$
	M1: either $G_X(t^3)$ or $\times t^2$ or using $Y = 2, 8, 14$
(a)	A1ft: ft their values of a and b, $a > 0$ and $b > 0$
(c)	$G_{Y}(t) = \frac{t^{2}}{64}("3" + "5"t^{6})^{2} \text{ or } G_{Y}(t) = \frac{t^{2}}{64}("9" + "30"t^{6} + "25"t^{12}) \text{ or }$
	$G_{\mathbf{r}}(t) = \frac{1}{64} ("9t^2" + "30"t^8 + "25"t^{14})$

Q3.

Question	Scheme	Marks	AOs
(a)	$G_{X}(1)=1$	M1	2.1
	$k \times 3^5 = 1$: $k = \frac{1}{243}$ *	A1*cso (2)	1.1b
(b)	$P(X=2)$ is coefficient of t^2 so $G_X(t) = k\left(+{}^5C_2\left(2t\right)^2+\right)$	M1	1.1b
	$P(X=2) = \frac{40}{243}$	A1 (2)	1.1b
(c)	$G_{W}(t) = \frac{t^3}{243} (1 + 2(t^2))^5$	M1	3.1a 1.1b
	$G_{W}(t) = \frac{t^3}{243} (1 + 2t^2)^5$	A1 (2)	
(d)	$G_U(t) = \frac{1}{243} (1+2t)^5 \times \frac{t(1+2t)^2}{9}$	M1	3.1a
	$=\frac{t(1+2t)^7}{2187}$	A1 (2)	1.1b

	Ari .		100
(e)	$G_{U}'(t) = \frac{14t(1+2t)^6}{2187} + \frac{(1+2t)^7}{2187}$	M1	2.1
	$G_{U}'(1) = \frac{17}{3}$	A1ft	1.1b
	$G_{U}''(t) = \frac{168t(1+2t)^5}{2187} + \frac{14(1+2t)^6}{2187} + \frac{14(1+2t)^6}{2187}$	M1	2.1
	$\mathbf{G}_{U}^{"}(1) = 28$	A1	1.1b
	$Var(U) = "28" + "\frac{17}{3}" - \left("\frac{17}{3}"\right)^2$	M1	2.1
	$=\frac{14}{9}$	A1 (6)	1.1b
ALT(e)	$G_X''(t) = A(1+2t)^3$	M1	
	$G_{X}'(1) = \frac{10}{3} \text{ and } G_{X}''(1) = \frac{80}{9}$	A1ft	
	$\mathbf{G_{r}}^{"}(t) = H(8 + 24t)$	M1	
	$G_{r}'(1) = \frac{7}{3}$ and $G_{r}''(1) = \frac{32}{9}$	A1	
	Using $G_{U}''(1) + G_{U}'(1) - \left(G_{U}'(1)\right)^2$ to find $Var(X)$, $Var\ Y$ and $Var\ U$	M1	
	$\frac{14}{9}$ or awrt1.56	A1	
		(14 1	marks)

Note	es:	
(a)	M1:	Stating $G_X(1) = 1$ eg $G_X(1) = k(1+2)^5 = 1$ $k(1+2)^5 = 1$ Allow Verification $\frac{1}{243} \times 3^5 = 1$
	A1*:	Fully correct proof with no errors Substituting $t=1$ Verification need therefore $G_X(1) = 1$
(b)	M1:	Attempting to find the coefficient of t^2
	Al:	$\frac{40}{243}$ or awrt 0.165
(c)	M1:	Realising the need to multiply through by t^3 or subst t^2 for t
	Al:	$\frac{t^3}{243} (1+2t^2)^5 \text{ oe eg } \frac{t^3}{243} (1+10t^2+40t^4+80t^6+80t^8+32t^{10})$
(d)	M1:	Realising the need to use $G_U(t) = G_X(t) \times G_Y(t)$
	A1:	$\frac{t(1+2t)^7}{2187}$ oe
(e)	M1:	For an attempt to differentiate G (u) e.g $G_{U}'(t) = At(1+2t)^6 + B(1+2t)^7$ ft their part(d) if in the form $kt(1+2t)^n$ where $n \ge 5$
	Alft:	$\frac{17}{3}$ or awrt 5.67
	M1:	For attempting second derivative eg $G_U''(t) = Ct(1+2t)^5 + D(1+2t)^6$ ft their part(d) if in the form $kt(1+2t)^n$ where $n \ge 5$
	Al	28
	M1:	Using $G_{U}^{''}(1) + G_{U}^{'}(1) - \left(G_{U}^{'}(1)\right)^{2}$ ft their values
	Al:	$\frac{14}{9}$ or awrt1.56

Q4.

Question	Scheme	Marks	AOs
(a)	$G_X(1) = 1$ gives	M1	2.1
,	$k \times 6^2 = 1$ so $k = \frac{1}{36}$ *	A1*cso	1.1b
25		(2)	
(b)	$P(X=3) = \text{coefficient of } t^3 \text{ so } G_X(t) = k(+4t^3)$	M1	1.1b
,	$[P(X=3)=]\frac{1}{9}$	A1	1.1b
20		(2)	
(c)	$G'_{X}(t) = 2k(3+t+2t^{2}) \times (1+4t)$	M1	2.1
Ì	$E(X) = G'_{X}(1) = 2k(3+1+2)\times(1+4)$	M1	1.1b
,	$=\frac{5}{3}$	A1	1.1b
1	$G_X''(t) = 2k (3+t+2t^2) \times 4 + (1+4t)^2 $	M1	2.1
1		A1	1.1b
	$G_X''(1) = 2k[6 \times 4 + 5^2]$ $\left\{ = \frac{49}{18} \right\}$	M1	1.1b
5	$Var(X) = G_X''(1) + G_X'(1) - \left[G_X'(1)\right]^2 = \frac{49}{18} + \frac{5}{3} - \frac{25}{9}$	M1	2.1
1	$=\frac{29}{18}*$	A1*cso	1.1b
3		(8)	
(d)	$G_{2X+1}(t) = \frac{t}{36} \left(3 + t^2 + 2\left(t^2\right)^2 \right)^2 \qquad [\times t \underline{\text{or sub } t^2 \text{ for } t}]$	M1	3.1a
	$= G_{2X+1}(t) = \frac{t}{36} (3 + t^2 + 2t^4)^2$	A1	1.1b
		(2)	
(a)		(14	marks)

3	Notes
(a)	M1: Stating $G_X(1) = 1$ A1*cso: Fully correct proof with no errors
(b)	M1: Attempting to find the coefficient of t^3 . May be implied by obtaining $\frac{1}{9}$ or awrt 0.11 A1: $\frac{1}{9}$, allow awrt 0.111

	Notes (continued)
(c)	M1: Attempting to find $G'_X(t)$. Allow Chain rule or multiplying out the brackets and differentiating
	M1: Substituting $t = 1$ into $G'_X(t)$
	A1 : $\frac{5}{3}$, allow awrt 1.67
	M1: Attempting to find $G_X''(t)$
	A1: $2k \left[\left(3 + t + 2t^2 \right) \times 4 + \left(1 + 4t \right)^2 \right]$ or $k(48t^2 + 24t + 26)$ o.e.
	A1: $2k[6\times4+5^2]$ o.e.
	M1: Using $G_X''(1) + G_X'(1) - [G_X'(1)]^2$ to find the Variance
	A1*cso: $\frac{29}{18}$
(d)	M1:Realising the need to $\times t$ or sub t^2 for t
	A1: $\frac{t}{36} (3+t^2+2t^4)^2$, or $\frac{t}{36} (9+6t^2+13t^4+4t^6+4t^8)$ o.e.