Discrete Random Variables

Questions

Q1.

The discrete random variable X has probability distribution

x	-3	-1	1	2	4
P(X=x)	q	$\frac{7}{30}$	$\frac{7}{30}$	q	r

where q and r are probabilities.

(a) Write down, in terms of q, $P(X \le 0)$

(b) Show that
$$E(X^2) = \frac{7}{15} + 13q + 16r$$

(2) Given that
$$E(X^3) = E(X^2) + E(6X)$$

- (c) find the value of q and the value of r
- (d) Hence find $P(X^3 > X^2 + 6X)$

(4)

(7)

(1)

(Total for question = 14 marks)

Q2.

The probability distribution of the discrete random variable X is

$$P(X = x) = \begin{cases} \frac{k}{x} & \text{for } x = 1, 2 \text{ and } 3\\ \frac{m}{2x} & \text{for } x = 6 \text{ and } 9\\ 0 & \text{otherwise} \end{cases}$$

where *k* and *m* are positive constants.

Given that E(X) = 3.8, find Var(X)

(7)

(Total for question = 7 marks)

Q3.

The discrete random variable *X* has the following probability distribution.

x	-5	-2	3	4
$D(V - \cdot)$	1	1	1	1
P(A - X)	12	6	4	2

(a) Find Var(X)

(3)

The discrete random variable Y is defined in terms of the discrete random variable X

When X is negative, $Y = X^2$ When X is positive, Y = 3X - 2

(b) Find P(Y < 9)

(c) Find E(XY)

(3)

(2)

(Total for question = 8 marks)

Q4.

The discrete random variable X has probability distribution

x	-3	-2	-1	0	2	5
P(X=x)	0.3	0.15	0.1	0.15	0.1	0.2

(a) Find E(X)

(1)

(2)

Given that Var(X) = 8.79

(b) find $E(X^2)$

The discrete random variable Y has probability distribution

у	-2	-1	0	1	2
P(Y=y)	<u>3</u> a	a	Ь	а	с

where *a*, *b* and *c* are constants.

For the random variable Y

$$P(Y \le 0) = 0.75$$
 and $E(Y^2 + 3) = 5$

(c) Find the value of *a*, the value of *b* and the value of *c*

The random variable W = Y - X where Y and X are independent.

The random variable T = 3W - 8

(d) Calculate P(W > T)

(4)

(5)

(Total for question = 12 marks)

Q5.

The discrete random variable X has the following probability distribution

x	0	2	3	6
P(X=x)	р	0.25	q	0.4

(a) Find in terms of q

(i)	E(<i>X</i>)
/::\	

(ii) $E(X^2)$

Given that Var(X) = 3.66

(b) show that q = 0.3

(3)

(2)

In a game, the score is given by the discrete random variable X

Given that games are independent,

(c) calculate the probability that after the 4th game has been played, the total score is exactly 20

(3)

A round consists of 4 games plus 2 bonus games. The bonus games are only played if after the 4th game has been played the total score is exactly 20

A prize of £10 is awarded if 6 games are played in a round **and** the total score for the round is at least 27

Bobby plays 3 rounds.

(d) Find the probability that Bobby wins at least $\pounds 10$

(6)

(Total for question = 14 marks)

Q6.

The discrete random variable X has probability distribution

x	-5	-1	0	5	Ь
P(X = x)	0.3	0.25	0.1	0.15	0.2

where *b* is a constant and b > 5

(a) Find E(X) in terms of b

Given that Var(X) = 34.26

(b) find the value of b

(c) Find
$$P(X \le 2 - 3X)$$

(4)

(1)

(Total for question = 9 marks)

Q7.

Members of a photographic group may enter a maximum of 5 photographs into a members only competition.

Past experience has shown that the number of photographs, *N*, entered by a member follows the probability distribution shown below.

n	0	1	2	3	4	5
$\mathbb{P}(N=n)$	а	0.2	0.05	0.25	Ь	с

Given that E(4N+2) = 14.8 and $P(N=5 | N > 2) = \frac{1}{2}$

(a) show that Var(N) = 2.76

(6)

The group decided to charge a 50p entry fee for the first photograph entered and then 20p for each extra photograph entered into the competition up to a maximum of $\pounds 1$ per person. Thus a member who enters 3 photographs pays 90p and a member who enters 4 or 5 photographs just pays $\pounds 1$

Assuming that the probability distribution for the number of photographs entered by a member is unchanged,

(b) calculate the expected entry fee per member.

(3)

Bai suggests that, as the mean and variance are close, a Poisson distribution could be used to model the number of photographs entered by a member next year.

(c) State a limitation of the Poisson distribution in this case.

(1)

(Total for question = 10 marks)

Mark Scheme – Discrete Random Variables

Q1.

	Scheme	Marks	AO
(a)	$q + \frac{7}{30}$	B1	1.1b
1052530		(1)	
(b)	$\mathbf{E}(X^{2}) = (-3)^{2} \times q + (-1)^{2} \times \frac{7}{30} + 1^{2} \times \frac{7}{30} + 2^{2} \times q + 4^{2} \times r$	M1	1.1b
	$=\frac{7}{15}+13q+16r$ (*)	A1*cso	1.1b
		(2)	
(c)	$E(X) = -3q + -\frac{7}{30} + \frac{7}{30} + 2q + 4r \{ = 4r - q \}$	M1	3.1a
	$E(X^2 + 6X) = \frac{7}{15} + 7q + 40r$	A1	1.1b
	$\mathbf{E}(X^{3}) = (-3)^{3} \times q + (-1)^{3} \times \frac{7}{30} + 1^{3} \times \frac{7}{30} + 2^{3} \times q + 4^{3} \times r$	M1	3.4
	= 64r - 19q	A1	1.1b
	Sum of probabilities = 1 gives: $2q + r = \frac{16}{30}$ (o.e.)	M1	1.1b
	Solve: $24r - 26q = \frac{7}{15}$ and $r + 2q = \frac{8}{15}$ e.g. $37r = \frac{111}{15}$	dM1	1.1b
	So $r = \frac{1}{5}$ and $q = \frac{1}{6}$	A1	1.1b
	3 3	(7)	
(a)	$X^2 > X^2 + 6X \implies X(X-3)(X+2) > 0$ Use of clotch on table to see: $X \le X \le 0$ on $X \ge 2$	M1	2.1
	So $P(X^3 > X^2 + 6X) = P(X = -1 \text{ or } 4)$	M1	2.2a
	$= \frac{7}{2} + "r" = \frac{13}{22}$	A1ft	1.1b
	30 <u>30</u>	(4)	1.10
ALT	X -3 -1 1 2 4		
ALI	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4 marks)	
2	Notes		Co.
(b)	M1 for at least 3 correct terms of the expression for $E(X^2)$		(*)
	Allow $-3^2 \times a + -1^2 \times \frac{3}{2}$ etc if followed by $9a +$ but not if simply followed	d by given	answer
	1	a of Bren	
(c)	1^{st} M1 for realising the need to find E(X) – a correct attempt with at least 3	correct tern	ns
	2^{nd} M1 for a correct attempt at $E(X^3)$ with at least 3 correct terms seen		
	Treat no $\frac{7}{30}$ terms as <u>one</u> correct term		
	2^{nd} A1 for $64r - 19q$ (must be simplified) or for $24r - 26q = \frac{7}{15}$		
	3^{rd} M1 for using sum of probabilities = 1 to form an equation in q and r (ne	edn't be sir	nplified)
	Must be correct or clearly state that $\Sigma \text{probs} = 1$ being attempted with 4^{th} dM1 for solving their 2 linear equations in a and r (dep on 2^{rd} M1 and 1^{s}	n only one	slip
	Must see correct method to reduce to a linear equation in one variab	le	,
	3^{rd} A1 for $r = \frac{1}{5}$ and $q = \frac{1}{6}$ or any exact equivalents (dep on 2 correct equ	ations seem	1)
	151 M1 for 151 store towards coluing the inequality (factorising the option)		
(a)	1^{st} A1 for solving the inequality (factorising the cubic)		
	2^{nd} M1 for identifying the values of X required i.e 1 and 4		
	2^{nd} A1ft for $\frac{13}{20}$ or exact equivalent e.g. 0.43 (Allow ft of "their r " + $\frac{7}{30}$)		
ALT	Table 1 st M1 for at least 4 correct values for X^3 and $X^2 + 6X$ (must be lat	oelled)	
	1 st A1 for all 10 correct values. [NB Can score M	11A0M1A	lft in (d)]
	59.6-5 		bioteco D

Q2.

Question	Scheme	Marks	AOs
	$\Sigma p = 1 \longrightarrow k + \frac{k}{2} + \frac{k}{3} + \frac{m}{12} + \frac{m}{18} = 1$ $\Sigma px = 3.8 \longrightarrow k + \frac{k}{2}(2) + \frac{k}{3}(3) + \frac{m}{12}(6) + \frac{m}{18}(9) = 3.8$	M1	3.1a
	$\frac{11k}{6} + \frac{5m}{36} = 1 \ [= 66k + 5m = 36]$	A1	1.1b
	3k + m = 3.8	A1	1.1b
	Solving simultaneously to eliminate one variable	dM1	1.1b
	$k = \frac{1}{3}$ and $m = \frac{14}{5}$	A1	1.1b
	$\mathbf{E}(X^2) = 1^2 \times k + 2^2 \times \frac{k}{2} + 3^2 \times \frac{k}{3} + 6^2 \times \frac{m}{12} + 9^2 \times \frac{m}{18} [= 23]$	M1	1.1b
	$Var(X) = 23 - 3.8^2$		
	= <u>8.56</u>	A1	1.1b
-	8		(7 marks)

2	Notes
2	M1: Attempt at both required equations with at least one term in k and one term in m correct
	A1: Correct equation using $\Sigma p = 1$
	A1: Correct equation using $\Sigma px = 3.8$
	dM1 : (dep on 1 st M1) Solving simultaneously (may be implied by one correct value found)
	A1: both values correct (may be implied by correct answer)
	M1: Attempt to find $E(X^2)$ using their value of k and their value of m with at least 3
	correct products or correct ft products Note: $E(X^2) = 6k + 7.5m$
	A1: 8.56 cao

Q3.

Question	Scheme	Marks	AOs				
(a)	$[E(X) =](-5) \times \frac{1}{12} + (-2) \times \frac{1}{6} + (3) \times \frac{1}{4} + (4) \times \frac{1}{2} [= 2]$	M1	1.1b				
	$[E(X^{2}) =](-5)^{2} \times \frac{1}{12} + (-2)^{2} \times \frac{1}{6} + (3)^{2} \times \frac{1}{4} + (4)^{2} \times \frac{1}{2} = 13] \text{ (oe)}$	M1	1.1b				
	$Var(X) = E(X^2) - [E(X)]^2 = 13 - 2^2 = 9$	A1	1.1b				
		(3)					
(b)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	3.1a				
	$P(Y < 9) = P(X = -2) + P(X = 3) \left[= \frac{1}{6} + \frac{1}{4} \right]$	M1	1.1b				
	$=\frac{5}{12}$	A1	1.1b				
		(3)					
(c)	$E(XY) = (-5)(25)\frac{1}{12} + (-2)(4) \times \frac{1}{6} + (3)(7) \times \frac{1}{4} + (4)(10) \times \frac{1}{2}$	M1	3.1a				
	= 13.5	A1	1.1b				
		(2)					
	·	(3	8 marks)				
-	Notes						
(a)	M1: Attempt at $E(X)$ with at least 3 correct products seen M1: Attempt at $E(X^2)$ with at least 3 correct products seen A1: 9 cao Alternative M1: Attempt at $E(X)$ with at least 3 correct products seen M1: Attempt at $E(X)$ with at least 3 correct products seen M1: Attempt at expression for $E((X - \mu)^2) = (-5 - 2)^2 \times \frac{1}{12} + (-2 - 2)^2 \times \frac{1}{6} + (3 - 2)^2 \times \frac{1}{4} + (4 + 1)^2)$ with at least 3 correct terms A1: 9 cao	$(-2)^2 \times \frac{1}{2}$					
(b)	M1: Finding distribution of Y M1: $P(X = -2) + P(X = 3)$ or $P(Y = 4) + P(Y = 7)$ A1: $\frac{5}{12}$ (condone awrt 0.417)	M1: Finding distribution of Y M1: $P(X = -2) + P(X = 3)$ or $P(Y = 4) + P(Y = 7)$ A1: $\frac{5}{27}$ (condone awrt 0.417)					
(c)	M1: Attempt at E(XY) with at least 2 correct terms A1: 13.5						

_		
n	Λ	
ч	÷.	

Question	Scheme	Marks	AOs
(a)	E(X) = -0.1 oe	B1	1.1b
		(1)	
(b)	$\operatorname{Var}(X) = \operatorname{E}(X^2) - ("-0.1")^2$	M1	1.2
	$E(X^2) = 8.8$	A1	1.1b
		(2)	
(c)	$(-2)^2 \times 3a + (-1)^2 \times a [+0^2 \times b] + 1^2 \times a + 2^2 \times c = ["2"]$	M1	1.1b
	7a + 2c = 1 oe	A1	1.1b
	One of $a + c = 0.25$ or $4a + b = 0.75$ or $5a + b + c = 1$	M1	3.1a
	Two of $a + c = 0.25$ or $4a + b = 0.75$ or $5a + b + c = 1$	A1	1.1b
	a = 0.1 and $b = 0.35$ and $c = 0.15$	A1	1.1b
		(5)	
(d)	P(W > T) = P(W > 3W - 8) = P(W < 4)	M1	3.1a
	$P(W < 4) = 1 - [P(X = -3) \times P(Y = 1) + P(X = -3) \times P(Y = 2) + P(X = -2) \times P(Y = 2)]$ or $= P(X \ge -1) + P(X = -2) \times P(Y \ne 2) + P(X = -3) \times P(Y \le 0)$	M1dep	1.1b
	$= 1 - [0.3 \times "0.1" + 0.3 \times "0.15" + 0.15 \times "0.15"]$ or $0.55 + 0.15 \times [1 - "0.15"] + 0.3 \times ["0.3" + "0.1" + "0.35"]$	M1dep	1.1b
	= 0.9025	A1	1.1b
		(4)	

		Notes:
(a)	B1:	-0.1 oe
(b)	M1:	For recalling and using a correct formula
	Al:	8.8
(c)	M1:	For use of $\sum y^2 P(Y = y) [= 2]$ or $\sum (y^2 + 3) P(Y = y) [= 5]$ 3 correct products seen
	A1:	For correct equation with a's collected
	M1:	For use of $\sum P(Y = y) = 1$ or $P(Y \le 0) = 0.75$ or $1 - P(Y \le 0) = 0.25$
	A1:	For 2 correct equations
	A1:	a, b and c correct. Award full marks if all 3 correct
(d)	M1:	For using the information given to work out the values of W . Allow $Y - X$ instead of W
	dM1:	For using the information given to work out which are the relevant combinations of X and Y . The irrelevant ones must not be used.
	M1:	Previous method must be awarded. All required cases identified and their probabilities of a , b and c used. Allow in terms of a , b and c
	A1:	0.9025 (accept awrt 0.903 or exact fraction $\frac{361}{400}$)

Q5.

Question	Scheme	Marks	AOs
(a)(i)	$\mathbf{E}(X) = [0 \times p] + (2 \times 0.25) + 3q + (6 \times 0.4) [= 2.9 + 3q]$	B1	1.1b
(ii)	$E(X^{2}) = [0 \times p] + (2^{2} \times 0.25) + 3^{2}q + (6^{2} \times 0.4)[=15.4 + 9q]$	B1	1.1b
		(2)	
(b)	$("15.4+9q") - ("2.9+3q")^2 = 3.66$	M1	1.1b
	$9q^2 + 8.4q - 3.33 = 0 \implies q = 0.3 \text{ and } -\frac{37}{30}$	M1	1.1b
	$q = 0.3^*$ since q cannot be negative	A1cso*	2.4
	SC $("15.4+9\times0.3") - ("2.9+3\times0.3")^2$ can get M1M0A0		
		(3)	<u> </u>
(c)	$P(x_1 + x_2 + x_3 + x_4 = 20) = P(6,6,6,2 \text{ or } 6,6,2,6 \text{ or } 6,2,6,6 \text{ or } 2,6,6,6)$	M1	1.1b
	$= 4 \times 0.4^3 \times 0.25$	M1	1.1b
	= 0.064 oe	A1	1.1b
		(3)	
(d)	$P(x_5 + x_6 \ge 7) = P(6,6 \text{ or } 6,3 \text{ or } 6,2)$	M1	3.1a
	$= (0.4^{2}) + 2 \times (0.4 \times 0.3) + 2 \times 0.4 \times 0.25 \ [= 0.6]$	M1	1.1b
	$P(score \ge 27) = "0.064" \times "0.6" [= 24/625 = 0.0384]$	M1	1.1b
	<i>Y</i> ~ B(3, "0.0384")	dM1	3.3
	$\mathbf{P}(Y \ge 1) = 1 - \mathbf{P}(Y = 0)$	M1	1.1b
	= 0.1108	Alcso	1.1b
		(6)	

(a)(i)	B1:	Correct expression for $E(X)$ need not be simplified					
(ii)	B1:	Correct expression for $E(X^2)$ need not be simplified					
(b)	M1:	Using "their $E(X^2)$ " – "their $(E(X))^2$ " = 3.66					
	Ml:	Rearranging to get a correct 3 term quadratic (condone missing = 0) leading to 0.3 and $-37/30(awrt -1.23)$ or $(10q-3)(30q+37)$					
	Alcso:*	cso with a comment why $-37/30$ is eliminated. Minimum required is $q \ge 0$ or they say it is impossible.					
(c)	M1:	Realising that combination is 6662. Any order. Implied by $0.4^3 \times 0.25$					
	M1:	Correct calculation					
	Al:	0.064 oe only eg 8/125					
(d)	M1: Realising all the different combinations 7 or more can be scored from 2 games need for arrangements) Implied by (0.4^2) and (0.4×0.3) and (0.4×0.25)						
	M1:	Fully correct method.					
	Ml:	For multiplying "their (c)" with "their $P(x_5 + x_6 \ge 7)$ " providing at least 2 combinations are used to find $P(x_5 + x_6 \ge 7)$ "					
	dM1:	Dependent on 3 rd M1 being awarded for using or writing B(3, "their P($x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \ge 27$)") (1-"0.0384") ³ or					
	Ml:	For writing or using $1 - P(Y=0) eg (1 - (1 - "0.0384")^3)$					
	Alcso:	awrt 0.111 from correct working					
NB (l	a) 1 st 3	marks					
Fully	correct n	nethod "0.064"× (0.4^2) +0.064×2× (0.4×0.3) +0.064×2× (0.4×0.25) is M1M1M1					
A11 3	but no an	rangements ie "0.064"× (0.4^2) +0.064× (0.4×0.3) +0.064× (0.4×0.25) M1M0M1					
At lea	st 2 com	binations used for > 7 eg $0.064 \times (0.4 \times 0.3) + 0.064 \times (0.4^2)$ or $2 \times (0.4 \times 0.3)$ M0M0M1					

Question		Marks	AOs						
(a)	[E(.	X) =]0.2b - 1						B1	1.1b
(b)	$E(X^2$	$^{2}) = 25 \times 0.3 + 1 >$	<0.25[+(0×0.1]+	25×0.15	$+0.2b^{2}$	$=11.5+0.2b^{2}$] M1	1.1b
	"11.	$5+0.2b^2$ "-("0.	$2b-1")^2$	[= 34.26	1			M1	3.1a
	0.16	$b^2 + 0.4b - 23.7$	6[=0]	or $\frac{4}{25}b$	$b^2 + \frac{2}{5}b - \frac{1}{5}b$	$\frac{594}{25} = 0$		M1	1.1b
	<i>b</i> =	11 [since b > 5]					A1	2.2a
								(4)	
(c)		X	-5	-1	0	5	"11"		
		X^2	25	1	0	25	"121"		
		2 - 3X	17	5	2	- 13	"- 31"	MI	21
		$X^2 - 2$	23	-1	-2	23	"119"	111	2.1
		-3X	15	3	0	15	"-33"	AIT	1.10
		$X^{2} + 3X$	10	-2	0	40	"154"		
		$X^2 + 3X - 2$	8	-4	-2	38	"152"		
	P(X	M1	2.2a						
	= <u>0.35</u>								1.1b
								(4)	
								1	otal 9

(a)	B1	Correct expression for $E(X)$
(b)	1 st M1	Correct attempt at $E(X^2)$ using $\sum x^2 P(X = x)$ at least 3 correct non-zero products Allow $(-5)^2$ etc
	2nd M1	Realising that $\operatorname{Var}(X) = \operatorname{E}(X^2) - [\operatorname{E}(X)]^2$ needs to be used
	3 rd M1	Reducing their equation to a 3 term quadratic. At least 2 terms correct. Allow e.g. $0.16b^2 + 0.4b = 23.76$ Condone missing "=0"
	Al	For 11 only (from the correct equation) so -13.5 must be eliminated
		Correct answer with no incorrect working seen scores 4/4
(c)	l st Ml l st Alft	At least 4 values correct for $(X^2 \text{ and } 2 - 3X) \text{ or } \text{ for } (X^2 - 2 \text{ and } - 3X) \text{ or } X^2 + 3X \text{ or } X^2 + 3X - 2$ (o.e.) Allow for solving equation with one sign error All correct or correct ft with their b but must have $b > 5$ (accurate to 1 sf) Allow solving equation to get awrt -3.6 and awrt 0.56 or $\frac{-3\pm\sqrt{17}}{2}$ (ft their $b > 5$)
		If there are omissions but no errors in the lists of values then if 2 nd M1 and 2 nd A1 are scored then the 1 st M1 and 1 st A1 can be given by implication.
	2 nd M1	For identifying the correct values of X required i.e. $X = -1$ and $X = 0$
	2nd Al	0.35
		NB It is possible to score M0A0M1A1 here if their table of values is incorrect
		Correct answer with no incorrect working seen scores 4/4
		(Allow correct use of their $b > 5$)

Q7.

Question				Scl	neme				Marks	AOs
(2)	4E(N) + 2 = 14.8 or E(N) = 3.2									3.1a
(1)	0.2+0.1+0.	M1	1.1b							
	$\frac{c}{0.25+b+c}$	M1	3.1a							
	b = 0.1 and	c = 0.3	5							
	$E(N^2) = 1 \times 0$	0.2+4	×0.05+	9×0.2	5+16×'	'0.1"+2	.5×"0.3	35" <mark>[=13]</mark>	M1	1.1b
	Var(N) = "1	3"-"3	.2"2						dM1	1.1b
	= 2.76 *									2.1
									(6)	
C	fee	0	50	70	90	100	100	1	M1	3.3
(b)	P(N=n)	a	0.2	0.05	0.25	Ь	с			
	$50 \times 0.2 + 70 \times 0.05 + 90 \times 0.25 + 100 \times 0.1" + 100 \times 0.35"$								M1	1.1b
	= 81p									1.1b
								(3)		
(c)	Poisson distribution will assign substantial probability to $N > 5$						B1	3.5b		
									(1)	
									(10 n	narks)

Note	es	
(a)	M1:	For using the given information to find E(N)
		ALT $a+b+c=0.5$ oe
	M1:	For use of $\sum nP(N=n) = "3.2"$ At least 3 terms correct
		ALT $\sum (4n+2)P(N=n) = 14.8 \Rightarrow 2a+1.2+0.5+3.5+18b+22c = 14.8$ At least 3 terms correct
	M1:	Forming an equation in b and c using conditional probability
	M1 :	For using $\sum n^2 P(N=n)$ Allow with the letters b and c
	dM1:	Dependent on previous method mark. Correct method to find Var(N)
	A1*:	All previous marks must be awarded and 2.76 stated
(b)	M1:	Setting up a new model with the correct fees. At least 3 terms correct. Allow 0.5, 0.7, 0.9, 1
	M1:	Correct method for calculating $E(fee)$ Allow with the letters b and c
	A1:	81[p] No units needed. Allow 0.81 if fees are in pounds
(c)	B1:	A correct limitation.