

# **Edexcel Further Maths AS-level Further Statistics 1**

Formula Sheet

Provided in formula book

Not provided in formula book

This work by PMT Education is licensed under CC BY-NC-ND 4.0











# **Discrete Probability Distributions**

#### **Discrete Random Variables**

For a discrete random variable *X* taking values  $x_i$  with probabilities  $P(X = x_i)$ :

Expectation (mean)

$$E(X) = \mu = \sum x_i P(X = x_i)$$

Variance

$$Var(X) = \sigma^2 = \sum (x_i - \mu)^2 P(X = x_i) = E(X^2) - (E(X))^2$$

For a function g(X):

$$E(g(X)) = \Sigma g(x_i) P(X = x_i)$$

$$E(aX + b) = aE(X) + b$$

$$Var(aX + b) = a^{2}Var(X)$$

### **Poisson and Binomial Distributions**

| Distribution | Binomial $B(n, p)$       | Poisson $Po(\lambda)$               |
|--------------|--------------------------|-------------------------------------|
| P(X=x)       | $\binom{n}{x}p^x(1-p)^x$ | $e^{-\lambda} \frac{\lambda^x}{x!}$ |
| Mean         | np                       | λ                                   |
| Variance     | np(1-p)                  | λ                                   |
| P.G.F        | $(1-p+pt)^n$             | $e^{\lambda(t-1)}$                  |

#### **Poisson Distribution**

If two Poisson distributions *X*, *Y* are independent:

$$X + Y \sim Po(\lambda_x + \lambda_y)$$

If each observation of *X* is independent and  $X \sim Po(\lambda)$ :

 $aX \sim Po(a\lambda)$ 

Binomial approximation

If  $X \sim B(n, p)$  and n is large and p close to 0 then  $X \approx \sim Po(np)$  where  $\lambda = np$ .

## **Hypothesis Testing**

| Null hypothesis | $H_0: \theta = m$                    |
|-----------------|--------------------------------------|
| One tailed test | $H_1$ : $\theta > m$ or $\theta < m$ |
| Two-tailed test | $H_1:\theta\neq m$                   |











# **Chi Squared Tests**

### **Measure of Goodness of Fit**

 $O_i = observed frequency$   $E_i = expected frequenct$ N = number of trials

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i} \sim \chi_v^2$$

The greater the value of  $X^2$ , the less good the fit.

## **Degrees of Freedom**

 $No.of\ degrees\ of\ freedom = No.of\ cells\ (after\ necessary\ combining) - No.of\ parameters$ 

## **Contingency Tables**

$$Expected\ frequency = \frac{Row\ total\ \times Column\ total}{Grand\ total}$$

Number of degrees of freedom  $\nu=(h-1)(k-1)$  for an  $h\times k$  table







