Probability Generating Functions Cheat Sheet

A probability generating function is a mathematical function that is very useful for dealing with discrete distributions which ta non-negative integer values (e.g. binomial or Poisson). A probability generating function can be used to generate all of probabilities within a distribution. More notably, it can also be used to easily find probabilities that pertain to a sum of rando variables (i.e. probabilities of the form P(X + Y = k)).

The fundamentals

• If a discrete random variable X has probability mass function P(X = x), then the probability generating function X is given by

> You can see that the coefficients of t^x are the probabilities P(X = x)

$$G_X(t) = \sum P(X=x)t^x$$

For example, consider the discrete probability distribution X:

Then the probability generating function of *X* is $G_X(t) = 0.1t^0 + 0.2t^1 + 0.3t^2 + 0.4t^3$.

- The coefficients of t^x are the probabilities P(X = x).
- For any probability generating function, $G_X(1) = 1$.
- The probability generating function for X is also given by $G_X(t) = E(t^X)$.

a) Use the fact that $G_x(1) = 1$.	$G_x(1) = k(1+2+2)^2 = 25k$ $\Rightarrow 25k = 1$
Divide through by 25.	$k = \frac{1}{25}$
b) $P(Y = 1)$ is given by the coefficient of t in the expansion of $G_x(t)$.	$G_x(t) = \frac{1}{25}(1+2t+2t^2)(1+2t+2t^2)$ = $\frac{1}{25}(1+4t+8t^2+8t^3+4t^4)$ = $\frac{1}{25} + \frac{4}{25}t + \frac{8}{25}t^2 + \frac{8}{25}t^3 + \frac{4}{25}t^4$
P(X = 1) = coefficient of t.	$\therefore P(X=1) = \frac{4}{25}$

Probability generating functions of standard distributions

You need to be able to use the probability generating functions for the poisson, binomial, negative binomial and geomet distributions.

- If a discrete random variable $X \sim B(n, p)$, the p.g.f of X is given by $G_x(t) = (1-p + pt)^n$
- If a discrete random variable $X \sim NB(r, p)$, then the p.g.f of X is given by $\mathbf{G}_{\mathbf{x}}(\mathbf{t}) = \left(\frac{\mathbf{pt}}{\mathbf{1} (\mathbf{1} \mathbf{p})\mathbf{t}}\right)^{\frac{1}{2}}$
- If a discrete random variable $X \sim Po(\lambda)$, then the p.g.f of X is given by $\mathbf{G}_{\mathbf{x}}(\mathbf{t}) = \mathbf{e}^{\lambda(\mathbf{t}-1)}$
- If a discrete random variable $X \sim Geo(p)$, then the p.g.f of X is given by $G_x(t) = \frac{pt}{1 (1 p)t}$

These results are given to you in the formula booklet, but you also need to be able to prove them from first principles. To do so, you will need to use the definition of a probability generating function, $G_x(t) = \sum P(X = x)t^x$, and substitute P(X = x)with the probability mass function for whichever distribution you are dealing with.

inomial distribution	Poisson distribution
Example 2: The random variable $X \sim B(n, p)$. Prove, from first principles, that the probability generating function of X is given by $G_x(t) = (1-p+pt)^n$.	Example 3: The random variable $X \sim Po(\lambda)$. Prove, from first principles, that the probability generating function of X is given by $G_x(t) = e^{\lambda(t-1)}$.
Using $G_x(t) = \sum P(X = x)t^x$: We have a sum with limits $x = 0$ and $x = n$ since X can only take values between 0 and n $\sum_{n=1}^{\infty} {n \choose n} (p)^x (1-p)^{n-x} t^x$	Using $G_x(t) = \sum P(X = x)t^x$: We have an infinite sum since a Poisson distributed random variable can theoretically take any non-negative integer value. $P(X = x) = \frac{e^{-\lambda}\lambda^x}{x!}$ $G_x(t) = \sum_{x=0}^{\infty} \frac{e^{-\lambda}\lambda^x}{x!}$
Since p and t are raised to the same power, we can rewrite this as: $G_x(t) = \sum_{x=0}^{n} {n \choose x} (pt)^x (1-p)^{n-x}$	Since λ and t are raised to the same power, we can rewrite this as: $G_x(t) = \sum_{x=0}^{\infty} \frac{e^{-\lambda} (\lambda t)^x}{x!}$
But notice that this expression we have now is exactly the expansion of $(a + b)^n$, with $a = \int_{x=0}^n \binom{n}{x} (pt)^x (1-p)^{n-x}$	Since $(\lambda t)^x$ is independent of x , we can take it outside the sum: $=e^{-\lambda}\sum_{x=0}^{\infty}\frac{(\lambda t)^x}{x!}$
$pt \text{ and } = (pt+1-p)^n$ $b=1-p. \text{ This completes the proof.} \qquad \qquad$	But notice that $\sum_{x=0}^{\infty} \frac{(\lambda t)^x}{x!}$ is the $e^n = \sum_{x=0}^{\infty} \frac{n^x}{x!}$, so $e^{\lambda t} = \sum_{x=0}^{\infty} \frac{(\lambda t)^x}{x!}$ Maclaurin expansion of e^x ,
	just with x replaced by λt . $\therefore G_x(t) = e^{-\lambda} e^{\lambda t} = e^{\lambda(t-1)}$.

metric distribution	Negative binomial distribution		Sume of independence	lent random variables		
<u>ample 4:</u> The random variable $X \sim Geo(p)$. Prove, from first principles, that e probability generating function of X is given by $G_X(t) = \frac{pt}{1-(1-p)t}$.	Example 5: The random variable $X \sim$ principles, that the probability gene	Example 5: The random variable $X \sim Negative B(r, p)$. Prove, from first principles, that the probability generating function of X can be written as $G_{n}(t) = \left(\frac{pt}{r}\right)^{r}$.		dent random variables d Y are independent ra	ndom variable	es with probability generating functions $m{G}_{m{\lambda}}$
Using $G_x(t) = \sum P(X = x)t^x$: We have an infinite sum since a $P(X = x) = p(1-p)^{x-1}$	$G_x(t) = \left(\frac{1}{1-(1-p)t}\right)$. You may quote the following result	without proof:	$\begin{array}{c} G_{Y}(t) \\ G_{Z}(t) \end{array}$	then the probability $g = G_X(t) \times G_V(t)$	generating fur	nction of $Z = X + Y$ is given by:
geometrically distributed random variable can theoretically take any non-negative integer value. $\therefore G_x(t) = \sum_{x=1}^{\infty} p(1-p)^{x-1} t^x$	$\sum_{x=r} \binom{x-1}{r-1} q^{x-r} = (1 - 1)^{r-1} q^{x-r} q^{x-r} = (1 - 1)^{r-1} q^{x-r} q^{x-r} = (1 - 1)^{r-1} q^{x-r} $	$(-q)^{-r}$ where $q = 1 - p$.	• If <i>Z</i> =	X + Y, then $E(Z) = E($	X) + $E(Y)$.	You are given this result and you do not need to be able to prove it.
Expanding the first few terms of the sum allows us to deduce that we are dealing with a geometric series. $G_x(t) = p[t + (1 - p)^1 t^1 + (1 - p)^2 t^2 + \cdots]$	Use $G_x(t) = \sum P(X = x)t^x$. We have an infinite sum since a NB distributed random variable can theoretically take any non-	$P(X = x) = \binom{x-1}{r-1} (p)^r (q)^{x-r}$	Example 8: A rai	idom variable X has a proba	ability generating	g function $G_X(t) = \frac{4}{(3-t)^2}$.
We have a geometric series with a = p(1-p)t and $r = (1-p)t$. $\therefore G_{\mathbf{x}}(t) = S_{\infty} = \frac{a}{1-r}$	negative integer value that is greater than or equal to r.	$\therefore u_x(t) = \sum_{x=r} {r \choose r-1} (p)^r (q)^{x-r} t^x$	A second rando	n variable Y has a probabili Y are independent	ty generating fur	nction $G_Y(t) = \frac{t}{(3-2t)^3}$.
Our sum is an infinite sum so using the sum to infinity for a geometric series will give us the p.g.f. $= \frac{pt}{1 - (1 - p)t}$ as required.	We can rewrite t^x as $t^{x-r}t^r$, so that the powers of t match those of p and q .	$G_{x}(t) = \sum_{x=r}^{\infty} {\binom{x-1}{r-1}} (p)^{r} (q)^{x-r} t^{x-r} t^{r}$	(a) write down t (b) find $E(Z)$.	he probability generating fu	Inction for $Z = \lambda$	X + Y.
an and variance of a distribution	Now bringing the terms with equal powers together:	$=\sum_{n=1}^{\infty} \binom{x-1}{r-1} (pt)^r (qt)^{x-r}$	a) We multiply	the probability	$G_Z(t) = G_X(t)$	$V \times G_{Y}(t)$
can differentiate the probability generating function ind the mean and variance for a probability distribution.	Since $(pt)^r$ is independent of x , we can take it out of the sum:	$= (pt)^{r} \sum_{x=x}^{\infty} {\binom{x-1}{r-1}} (qt)^{x-r}$	obtain the p.g b) To find the	f of Z. mean, we can use	$G_{Z}(t) = \frac{1}{(3-t)^{2}}$ $G'_{X}(t) = 4(3 + t)^{2}$	$\frac{1}{2} \times \frac{1}{(3-2t)^3} = \frac{1}{(3-t)^2(3-2t)^3} - t)^{-2}$
• $E(X) = G'_x(1)$	Now we can use the result we	$\sum_{r=1}^{\infty} {x-1 \choose r-1} (qt)^{x-r} = (1-qt)^{-r}$	$\frac{E(Z) - E(X)}{\text{finding } E(X)}$	+ E(I). 30, we start by	$G'_X(1) = 4(3)$	$(-1)^{-2} = 1 = E(X)$
• $Var(X) = G''_{x}(1) + G'_{x}(1) - (G'_{x}(1))^{2}$	were given in the question but replacing q with qt .	$\begin{array}{l} \sum_{x=r}^{x=r} (t) = (pt)^r (1-qt)^{-r} \\ = \left(\frac{pt}{1-(1-r)^4}\right)^r \end{array}$	Find <i>E</i> (<i>Y</i>).		$G'_{Y}(1) = 6(3-6)$	$(-2)^{-4} = 6 = E(Y)$
following fact is also useful:		(1-(1-p)i)	Use $E(Z) = E$	(X) + E(Y).	$\Rightarrow E(Z) = E(Z)$	X + E(Y) = 1 + 6 = 7
use of the product and chain rates here.						not need to be able to prove it.
						not need to be able to prove it.
To find the mean, substitute $t = 1$.	$G'_{x}(1) = \frac{2(2+1)^{4}}{81} + \frac{4(2+1)^{3}}{81} = \frac{10}{3}$ $\therefore E(X) = \frac{10}{3}$		Example 9: A Find the prob	andom variable X has a pro ability generating functions	bability generati for the following	ing function $G_x(t) = \frac{1}{2}t + \frac{1}{2}t^3$. grandom variables:
To find the mean, substitute $t = 1$. Now to find the variance, we first need to find $G''_x(1)$.	$G'_{x}(1) = \frac{2(2+1)^{4}}{81} + \frac{4(2+1)^{3}}{81} = \frac{10}{3}$ $\therefore E(X) = \frac{10}{3}$ $G''_{x}(t) = \frac{2(2+t)^{4}}{81} + \frac{8t(2+t)^{3}}{81} + \frac{8t}{81}$	$\frac{(2+t)^3}{81} + \frac{24t(2+t)^3}{81}$	Example 9: A Find the prob. a) $Y = 3X$ b) $Y = 2X + 3$ c) $Y = 4X - 5$	andom variable X has a pro sbility generating functions	bability generati	ing function $G_x(t) = \frac{1}{2}t + \frac{1}{2}t^3$. grandom variables:
To find the mean, substitute $t = 1$. Now to find the variance, we first need to find $G''_x(1)$. Substitute $t = 1$.	$G'_{x}(1) = \frac{2(2+1)^{4}}{81} + \frac{4(2+1)^{3}}{81} = \frac{10}{3}$ $\therefore E(X) = \frac{10}{3}$ $G''_{x}(t) = \frac{2(2+t)^{4}}{81} + \frac{8t(2+t)^{3}}{81} + \frac{8t}{81}$ $\Rightarrow G''_{x}(1) = \frac{2(2+1)^{4}}{81} + \frac{8(2+1)^{3}}{81} + \frac{4(2+1)^{3}}{81} + \frac{24t(2+1)^{3}}{81} + \frac{8t(2+1)^{3}}{81} + 8t(2$	$\frac{\frac{(2+t)^3}{81} + \frac{24t(2+t)^3}{81}}{\frac{8t(2+1)^3}{81}} = \frac{26}{2}$	Example 9: AFind the probabilitya) $Y = 3X$ b) $Y = 2X + 3$ c) $Y = 4X - 5$ a) Use $G_Y(t)$	andom variable X has a probability generating functions $g_{1}^{a} = t^{b}G_{X}(t^{a})$ with $a = 3, b$	bability generati for the following = 0.	not need to be able to prove it. ing function $G_x(t) = \frac{1}{2}t + \frac{1}{2}t^3$. grandom variables: $G_Y(t) = t^0 G_X(t^3) = \frac{1}{2}t^3 + \frac{1}{2}(t^3)^3 = \frac{1}{2}t^3 + \frac{1}{2}t^3$
To find the mean, substitute $t = 1$. Now to find the variance, we first need to find $G''_x(1)$. Substitute $t = 1$. Use $Var(X) = G''_x(1) + G'_x(1) - (G'_x(1))^2$	$G'_{x}(1) = \frac{2(2+1)^{4}}{81} + \frac{4(2+1)^{3}}{81} = \frac{10}{3}$ $\therefore E(X) = \frac{10}{3}$ $G''_{x}(t) = \frac{2(2+t)^{4}}{81} + \frac{8t(2+t)^{3}}{81} + \frac{8t}{81} + \frac{8t(2+t)^{3}}{81} + \frac{8t(2+t)^{3}}{81} + \frac{24t(2+t)^{3}}{81} + 2$	$\frac{\frac{(2+t)^3}{81} + \frac{24t(2+t)^3}{81}}{\frac{8t(2+1)^3}{9^3}} = \frac{\frac{26}{3}}{3}$	Example 9: A Find the prob. a) $Y = 3X$ b) $Y = 2X + 3$ c) $Y = 4X - 5$ a) Use $G_Y(t)$ b) Use $G_Y(t)$	Fundom variable X has a probability generating functions $g(t) = t^b G_X(t^a) \text{ with } a = 3, b$ $g(t) = t^b G_X(t^a) \text{ with } a = 2, b$	bability generati for the following = 0. $r = 3.$ $G_Y(t)$	not need to be able to prove it. ing function $G_x(t) = \frac{1}{2}t + \frac{1}{2}t^3$. grandom variables: $G_Y(t) = t^0 G_X(t^3) = \frac{1}{2}t^3 + \frac{1}{2}(t^3)^3 = \frac{1}{2}t^3 + \frac{1}{2}t^3$ t) $= t^3 G_X(t^2) = t^3 \left(\frac{1}{2}t^2 + \frac{1}{2}(t^2)^3\right) = \frac{1}{2}t^5 + \frac{1}{2}t^5$
To find the mean, substitute $t = 1$. Now to find the variance, we first need to find $G''_x(1)$. Substitute $t = 1$. Use $Var(X) = G''_x(1) + G'_x(1) - (G'_x(1))^2$ Example 7: The discrete random variable X has probability general	$G'_{x}(1) = \frac{2(2+1)^{4}}{81} + \frac{4(2+1)^{3}}{81} = \frac{10}{3}$ $\therefore E(X) = \frac{10}{3}$ $G''_{x}(t) = \frac{2(2+t)^{4}}{81} + \frac{8t(2+t)^{3}}{81} + \frac{8t}{81} + \frac{8t(2+1)^{3}}{81} + \frac{8t(2+1)^{3}}{81} + \frac{24t(2+1)^{3}}{81} + 2$	$\frac{(2+t)^{3}}{81} + \frac{24t(2+t)^{3}}{81}$ $\frac{8t(2+1)^{3}}{3} = \frac{26}{3}$ $\frac{b^{3}}{3} = \frac{26}{3}$	Example 9: AFind the prob.a) $Y = 3X$ b) $Y = 2X + 1$ c) $Y = 4X - 5$ a) Use $G_Y(t)$ b) Use $G_Y(t)$ c) Use $G_Y(t)$	andom variable X has a pro- sublity generating functions $g(x) = t^b G_X(t^a)$ with $a = 3, b$ $g(x) = t^b G_X(t^a)$ with $a = 2, b$ $g(x) = t^b G_X(t^a)$ with $a = 4, b$	bability generati for the following = 0. = 3. $G_Y(t)$ = -5. $G_Y(t)$	not need to be able to prove it. ing function $G_x(t) = \frac{1}{2}t + \frac{1}{2}t^3$. grandom variables: $G_Y(t) = t^0 G_X(t^3) = \frac{1}{2}t^3 + \frac{1}{2}(t^3)^3 = \frac{1}{2}t^3 + \frac{1}{2}t^3$ $t) = t^3 G_X(t^2) = t^3 \left(\frac{1}{2}t^2 + \frac{1}{2}(t^2)^3\right) = \frac{1}{2}t^5 + \frac{1}{2}t^5$ $t) = t^{-5} G_X(t^4) = t^{-5} \left(\frac{1}{2}t^4 + \frac{1}{2}(t^4)^3\right) = \frac{1}{2}t^{-1} + \frac{1}{2}t^{-1}$
To find the mean, substitute $t = 1$. Now to find the variance, we first need to find $G''_x(1)$. Substitute $t = 1$. Use $Var(X) = G''_x(1) + G'_x(1) - (G'_x(1))^2$ Example 7: The discrete random variable X has probability generations for that the mean of X is 1.5, find the values of a and b. We first differentiate with respect to t. We need to make	$G'_{x}(1) = \frac{2(2+1)^{4}}{81} + \frac{4(2+1)^{3}}{81} = \frac{10}{3}$ $\therefore E(X) = \frac{10}{3}$ $G''_{x}(t) = \frac{2(2+t)^{4}}{81} + \frac{8t(2+t)^{3}}{81} + \frac{8t}{81}$ $\Rightarrow G''_{x}(1) = \frac{2(2+1)^{4}}{81} + \frac{8(2+1)^{3}}{81} + \frac{24t(2+1)^{3}}{81} + 24t(2+1)^$	$\frac{(2+t)^{3}}{81} + \frac{24t(2+t)^{3}}{81}$ $\frac{8t(2+1)^{3}}{3} = \frac{26}{3}$ d <i>b</i> are positive constants.	Example 9: AFind the prob.a) $Y = 3X$ b) $Y = 2X + 3$ c) $Y = 4X - 5$ a) Use $G_Y(t)$ b) Use $G_Y(t)$ c) Use $G_Y(t)$ c) Use $G_Y(t)$	andom variable X has a probability generating functions $g(x) = t^b G_X(t^a) \text{ with } a = 3, b$ $g(x) = t^b G_X(t^a) \text{ with } a = 2, b$ $g(x) = t^b G_X(t^a) \text{ with } a = 4, b$	bability generati for the following = 0. = 3. $G_{\gamma}(t)$ = -5. $G_{\gamma}(t)$	not need to be able to prove it. ing function $G_x(t) = \frac{1}{2}t + \frac{1}{2}t^3$. grandom variables: $G_Y(t) = t^0 G_X(t^3) = \frac{1}{2}t^3 + \frac{1}{2}(t^3)^3 = \frac{1}{2}t^3 + \frac{1}{2}t^5$ $t) = t^3 G_X(t^2) = t^3 \left(\frac{1}{2}t^2 + \frac{1}{2}(t^2)^3\right) = \frac{1}{2}t^5 + \frac{1}{2}t^6$ $t) = t^{-5} G_X(t^4) = t^{-5} \left(\frac{1}{2}t^4 + \frac{1}{2}(t^4)^3\right) = \frac{1}{2}t^{-1} + \frac{1}{2}t^{-1}$
To find the mean, substitute $t = 1$. Now to find the variance, we first need to find $G''_x(1)$. Substitute $t = 1$. Use $Var(X) = G''_x(1) + G'_x(1) - (G'_x(1))^2$ Example 7: The discrete random variable X has probability genera Given that the mean of X is 1.5, find the values of a and b. We first differentiate with respect to t. We need to make use of the quotient (or product) rule here. The mean is 1.5, so substitute $t = 1$ and equate to 1.5.	$G'_{x}(1) = \frac{2(2+1)^{4}}{81} + \frac{4(2+1)^{3}}{81} = \frac{10}{3}$ $\therefore E(X) = \frac{10}{3}$ $G''_{x}(t) = \frac{2(2+t)^{4}}{81} + \frac{8t(2+t)^{3}}{81} + \frac{8t}{81}$ $\Rightarrow G''_{x}(1) = \frac{2(2+1)^{4}}{81} + \frac{8(2+1)^{3}}{81} + \frac{24t(2+1)}{81} + \frac{24t(2+1)}{81}$ $\therefore Var(X) = \frac{26}{3} + \frac{10}{3} - \left(\frac{10}{3}\right)^{2} = \frac{8}{9}$ ating function $G_{x}(t) = \frac{at}{b-t^{2}}$, where a and $G'_{x}(t) = \frac{a(b-t^{2})+2at^{2}}{(b-t^{2})^{2}}$ $G'_{x}(1) = \frac{a(b-1)+2a}{(b-1)+2a} = 1.5$	$\frac{(2+t)^{3}}{81} + \frac{24t(2+t)^{3}}{81}$ $\frac{8t(2+1)^{3}}{3} = \frac{26}{3}$ d <i>b</i> are positive constants.	Example 9: AFind the probabilitya) $Y = 3X$ b) $Y = 2X + 1$ c) $Y = 4X - 5$ a) Use $G_Y(t)$ b) Use $G_Y(t)$ c) Use $G_Y(t)$ Example 10: T $G_X(t) = (0.4)$	andom variable X has a pro- subility generating functions $g(x) = t^b G_X(t^a)$ with $a = 3, b$ $g(x) = t^b G_X(t^a)$ with $a = 2, b$ $g(x) = t^b G_X(t^a)$ with $a = 4, b$ the discrete random variable $+0.6t)^2$	bability generati for the following = 0. = 3. $G_Y(t)$ = -5. $G_Y(t)$ e $X \sim B(n, p)$ has	not need to be able to prove it. ing function $G_x(t) = \frac{1}{2}t + \frac{1}{2}t^3$. grandom variables: $G_Y(t) = t^0 G_x(t^3) = \frac{1}{2}t^3 + \frac{1}{2}(t^3)^3 = \frac{1}{2}t^3 + \frac{1}{2}t^6$ t) $= t^3 G_x(t^2) = t^3 \left(\frac{1}{2}t^2 + \frac{1}{2}(t^2)^3\right) = \frac{1}{2}t^5 + \frac{1}{2}t^9$ t) $= t^{-5}G_x(t^4) = t^{-5} \left(\frac{1}{2}t^4 + \frac{1}{2}(t^4)^3\right) = \frac{1}{2}t^{-1} + \frac{1}{2}t^{-1}$
To find the mean, substitute $t = 1$. Now to find the variance, we first need to find $G''_x(1)$. Substitute $t = 1$. Use $Var(X) = G''_x(1) + G'_x(1) - (G'_x(1))^2$ Example 7: The discrete random variable X has probability generative for the mean of X is 1.5, find the values of a and b. We first differentiate with respect to t. We need to make use of the quotient (or product) rule here. The mean is 1.5, so substitute $t = 1$ and equate to 1.5. Rearrange to make a the subject. Name this equation [1].	$\begin{aligned} G'_{x}(1) &= \frac{2(2+1)^{4}}{81} + \frac{4(2+1)^{3}}{81} = \frac{10}{3} \\ &\therefore E(X) &= \frac{10}{3} \\ \\ G''_{x}(t) &= \frac{2(2+t)^{4}}{81} + \frac{8t(2+t)^{3}}{81} + \frac{8t}{81} \\ &\Rightarrow G''_{x}(1) = \frac{2(2+1)^{4}}{81} + \frac{8t(2+1)^{3}}{81} + \frac{24t(2+1)}{81} \\ &+ \frac{24t(2+1)}{81} \\ &\therefore Var(X) = \frac{26}{3} + \frac{10}{3} - \left(\frac{10}{3}\right)^{2} = \frac{8}{9} \\ \\ &ating function G_{x}(t) &= \frac{at}{b-t^{2}}, \text{ where } a \text{ and} \\ &G'_{x}(t) &= \frac{a(b-t^{2})+2at^{2}}{(b-t^{2})^{2}} \\ &G'_{x}(1) &= \frac{a(b-1)+2a}{(b-1)^{2}} = 1.5 \\ &1.5(b-1)^{2} = ab - a + 2a \\ &\therefore a(b+1) = 1.5(b-1)^{2} \\ &\Rightarrow a &= \frac{1.5(b-1)^{2}}{(b+1)} [1] \end{aligned}$	$\frac{(2+t)^{3}}{81} + \frac{24t(2+t)^{3}}{81}$ $\frac{8t(2+1)^{3}}{3} = \frac{26}{3}$ d b are positive constants.	Example 9: AFind the prob.a) $Y = 3X$ b) $Y = 2X + 1$ c) $Y = 4X - 5$ a) Use $G_Y(t)$ b) Use $G_Y(t)$ c) Use $G_Y(t)$ c) Use $G_Y(t)$ c) Use $G_Y(t)$ d) Write downTwo independence $Y = X_1 + X_2$.b) Use calculation	andom variable X has a probability generating functions $g(x) = t^b G_X(t^a)$ with $a = 3, b$ $g(x) = t^b G_X(t^a)$ with $a = 2, b$ $g(x) = t^b G_X(t^a)$ with $a = 4, b$ the discrete random variable $+0.6t)^2$ the values of n and p . ent observations X_1 and X_2 is to show that $E(Y^2) = 6.7$	bability generati for the following = 0. = 3. $G_{\gamma}(t)$ = -5. $G_{\gamma}(t)$ e $X \sim B(n, p)$ has are taken from 2.	not need to be able to prove it. ing function $G_x(t) = \frac{1}{2}t + \frac{1}{2}t^3$. grandom variables: $G_Y(t) = t^0 G_X(t^3) = \frac{1}{2}t^3 + \frac{1}{2}(t^3)^3 = \frac{1}{2}t^3 + \frac{1}{2}t^3$ $f(t) = t^3 G_X(t^2) = t^3 \left(\frac{1}{2}t^2 + \frac{1}{2}(t^2)^3\right) = \frac{1}{2}t^5 + \frac{1}{2}t^9$ $f(t) = t^{-5}G_X(t^4) = t^{-5}\left(\frac{1}{2}t^4 + \frac{1}{2}(t^4)^3\right) = \frac{1}{2}t^{-1} + \frac{1}{2}t^{-1}$ probability generating function given by the distribution of <i>X</i> . The random variable
To find the mean, substitute $t = 1$. Now to find the variance, we first need to find $G''_x(1)$. Substitute $t = 1$. Use $Var(X) = G''_x(1) + G'_x(1) - (G'_x(1))^2$ Example 7: The discrete random variable X has probability generative for the mean of X is 1.5, find the values of a and b . We first differentiate with respect to t. We need to make use of the quotient (or product) rule here. The mean is 1.5, so substitute $t = 1$ and equate to 1.5. Rearrange to make a the subject. Name this equation [1]. We also know that $G_x(1) = 1$.	$G'_{x}(1) = \frac{2(2+1)^{4}}{81} + \frac{4(2+1)^{3}}{81} = \frac{10}{3}$ $\therefore E(X) = \frac{10}{3}$ $G''_{x}(t) = \frac{2(2+t)^{4}}{81} + \frac{8t(2+t)^{3}}{81} + \frac{8t}{81}$ $\Rightarrow G''_{x}(1) = \frac{2(2+1)^{4}}{81} + \frac{8t(2+t)^{3}}{81} + \frac{4t}{81} + \frac{24t(2+1)}{81} + 24t(2+1$	$\frac{(2+t)^{3}}{81} + \frac{24t(2+t)^{3}}{81}$ $\frac{8t(2+1)^{3}}{9^{3}} = \frac{26}{3}$ d b are positive constants.	Example 9: AFind the prob.a) $Y = 3X$ b) $Y = 2X + 1$ c) $Y = 4X - 5$ a) Use $G_Y(t)$ b) Use $G_Y(t)$ c) Use $G_Y(t)$ c) Use $G_Y(t)$ c) Use $G_Y(t)$ c) Use $G_Y(t)$ a) Use $G_Y(t)$ a) Write down Two independ $Y = X_1 + X_2$.b) Use calculaa) Use the r r andom var	andom variable X has a pro- ability generating functions $(a) = t^b G_X(t^a)$ with $a = 3, b$ $(b) = t^b G_X(t^a)$ with $a = 2, b$ $(c) = t^b G_X(t^a)$ with $a = 4, b$ $(c) = t^b G_X(t^a)$ with $a = 4, b$ the discrete random variable $+0.6t)^2$ the values of n and p . ent observations X_1 and X_2 is to show that $E(Y^2) = 6.7$ esult that a binomially distri- able has p.g.f $(1 - p + pt)^n$	bability generati for the following = 0. = 3. $G_Y(t)$ = -5. $G_Y(t)$ e $X \sim B(n, p)$ has are taken from 2.	not need to be able to prove it. ing function $G_x(t) = \frac{1}{2}t + \frac{1}{2}t^3$. g random variables: $G_Y(t) = t^0 G_X(t^3) = \frac{1}{2}t^3 + \frac{1}{2}(t^3)^3 = \frac{1}{2}t^3 + \frac{1}{2}t^5$ $f(t) = t^3 G_X(t^2) = t^3 (\frac{1}{2}t^2 + \frac{1}{2}(t^2)^3) = \frac{1}{2}t^5 + \frac{1}{2}t^9$ $f(t) = t^{-5}G_X(t^4) = t^{-5} (\frac{1}{2}t^4 + \frac{1}{2}(t^4)^3) = \frac{1}{2}t^{-1} + \frac{1}{2}t^{-1}$ probability generating function given by the distribution of <i>X</i> . The random variable n = 2, p = 0.6
To find the mean, substitute $t = 1$. Now to find the variance, we first need to find $G''_x(1)$. Substitute $t = 1$. Use $Var(X) = G''_x(1) + G'_x(1) - (G'_x(1))^2$ Example 7: The discrete random variable X has probability genera Given that the mean of X is 1.5, find the values of a and b. We first differentiate with respect to t. We need to make use of the quotient (or product) rule here. The mean is 1.5, so substitute $t = 1$ and equate to 1.5. Rearrange to make a the subject. Name this equation [1]. We also know that $G_x(1) = 1$. Now we just need to solve [1] and [2] simultaneously. Substitute [2] into [1].	$G'_{x}(1) = \frac{2(2+1)^{4}}{81} + \frac{4(2+1)^{3}}{81} = \frac{10}{3}$ $\therefore E(X) = \frac{10}{3}$ $G''_{x}(t) = \frac{2(2+t)^{4}}{81} + \frac{8t(2+t)^{3}}{81} + \frac{8t}{81}$ $\Rightarrow G''_{x}(1) = \frac{2(2+1)^{4}}{81} + \frac{8t(2+t)^{3}}{81} + \frac{8t}{81} + \frac{10}{81} + $	$\frac{(2+t)^{3}}{81} + \frac{24t(2+t)^{3}}{81}$ $\frac{8t(2+1)^{3}}{3} = \frac{26}{3}$ d b are positive constants.	Example 9: AFind the probabilitya) $Y = 3X$ b) $Y = 2X + 1$ c) $Y = 4X - 5$ a) Use $G_Y(t)$ b) Use $G_Y(t)$ c) Use $G_Y(t)$ c) Use $G_Y(t)$ c) Use $G_Y(t)$ d) Use	andom variable X has a pro- ability generating functions $g(x) = t^b G_X(t^a)$ with $a = 3, b$ a = 2, b $b = t^b G_X(t^a)$ with $a = 2, b$ $b = t^b G_X(t^a)$ with $a = 4, b$ $b = t^b G_X(t^a)$ with $a = 4, b$ the discrete random variable $+0.6t)^2$ the values of n and p . ent observations X_1 and X_2 is to show that $E(Y^2) = 6.7$ esult that a binomially distri- able has p.g.f $(1 - p + pt)^n$ b = 2, f of Y . This is found by m K_1 and X_2 , which are both re from the distribution of Y	abability generati for the following = 0. = 3. $G_Y(t)$ = -5. $G_Y(t)$ e $X \sim B(n, p)$ has g are taken from the same taken from	not need to be able to prove it. ing function $G_x(t) = \frac{1}{2}t + \frac{1}{2}t^3$. grandom variables: $G_Y(t) = t^0 G_x(t^3) = \frac{1}{2}t^3 + \frac{1}{2}(t^3)^3 = \frac{1}{2}t^3 + \frac{1}{2}t^6$ $f(t) = t^3 G_x(t^2) = t^3 (\frac{1}{2}t^2 + \frac{1}{2}(t^2)^3) = \frac{1}{2}t^5 + \frac{1}{2}t^9$ $f(t) = t^{-5}G_x(t^4) = t^{-5} (\frac{1}{2}t^4 + \frac{1}{2}(t^4)^3) = \frac{1}{2}t^{-1} + \frac{1}{2}t^{-1} + \frac{1}{2}t^{-1}$ probability generating function given by the distribution of X. The random variable n = 2, p = 0.6 $G_Y(t) = G_{X_1}(t) \times G_{X_2}(t) = [G_X(t)]^2$ $\therefore G_Y(t) = (0.4+0.6t)^4$
To find the mean, substitute $t = 1$. Now to find the variance, we first need to find $G''_x(1)$. Substitute $t = 1$. Use $Var(X) = G''_x(1) + G'_x(1) - (G'_x(1))^2$ Example 7: The discrete random variable X has probability genera Given that the mean of X is 1.5, find the values of a and b. We first differentiate with respect to t. We need to make use of the quotient (or product) rule here. The mean is 1.5, so substitute $t = 1$ and equate to 1.5. Rearrange to make a the subject. Name this equation [1]. We also know that $G_x(1) = 1$. Now we just need to solve [1] and [2] simultaneously. Substitute [2] into [1]. Solve for b.	$G'_{x}(1) = \frac{2(2+1)^{4}}{81} + \frac{4(2+1)^{3}}{81} = \frac{10}{3}$ $\therefore E(X) = \frac{10}{3}$ $G''_{x}(t) = \frac{2(2+t)^{4}}{81} + \frac{8t(2+t)^{3}}{81} + \frac{8t}{81}$ $\Rightarrow G''_{x}(1) = \frac{2(2+1)^{4}}{81} + \frac{8t(2+1)^{3}}{81} + \frac{10}{81} + \frac{24t(2+1)}{81} + 24t($	$\frac{(2+t)^{3}}{81} + \frac{24t(2+t)^{3}}{81}$ $\frac{8t(2+1)^{3}}{81} = \frac{26}{3}$ d b are positive constants.	Example 9: AFind the probabilitya) $Y = 3X$ b) $Y = 2X + 3$ c) $Y = 4X - 5$ a) Use $G_Y(t)$ b) Use $G_Y(t)$ c) Use $G_Y(t)$ c) Use $G_Y(t)$ c) Use $G_Y(t)$ d) Write downTwo independ $Y = X_1 + X_2$ b) Use calculua) Use the ra) Use the ra) Use the rrandom varb) Find thethe p.g.fs osince they a $E(Y^2) = V_1$ So, we need	andom variable X has a pro- ability generating functions $(a) = t^b G_X(t^a)$ with $a = 3, b$ $(b) = t^b G_X(t^a)$ with $a = 2, b$ $(c) = t^b G_X(t^a)$ with $a = 2, b$ $(c) = t^b G_X(t^a)$ with $a = 4, b$ $(c) = t^b G_X(t^a)$ with $a = 4, b$ the discrete random variable $+0.6t)^2$ the values of n and p . ent observations X_1 and X_2 is to show that $E(Y^2) = 6.7$ esult that a binomially distri- able has p.g.f $(1 - p + pt)^n$ (c) = for Y. This is found by m $t X_1$ and X_2 , which are both re from the distribution of Y $Var(Y) = E(Y^2) - E(Y)^2$ trift $(Y) = t(Y^2)$. to find $E(Y)$ and $Var(Y)$ is	abability generati for the following = 0. = 3. $G_Y(t)$ = -5. $G_Y(t)$ e $X \sim B(n, p)$ has e are taken from 2. butted b. multiplying the same x. gives n order to	not need to be able to prove it. ing function $G_x(t) = \frac{1}{2}t + \frac{1}{2}t^3$. grandom variables: $G_Y(t) = t^0 G_X(t^3) = \frac{1}{2}t^3 + \frac{1}{2}(t^3)^3 = \frac{1}{2}t^3 + \frac{1}{2}t^6$ $f(t) = t^3 G_X(t^2) = t^3 (\frac{1}{2}t^2 + \frac{1}{2}(t^2)^3) = \frac{1}{2}t^5 + \frac{1}{2}t^9$ $f(t) = t^{-5}G_X(t^4) = t^{-5} (\frac{1}{2}t^4 + \frac{1}{2}(t^4)^3) = \frac{1}{2}t^{-1} + \frac{1}{2}t^{-1}$ probability generating function given by the distribution of X. The random variable n = 2, p = 0.6 $G_Y(t) = G_{X_1}(t) \times G_{X_2}(t) = [G_X(t)]^2 + G_Y(t) = (0.4+0.6t)^4$ $G'_Y(t) = 4(0.6)(0.4 + 0.6t)^3 = 2.4$ $G'_Y(t) = 4(3)(0.6)^2(0.4 + 0.6t)^2$
To find the mean, substitute $t = 1$.Now to find the variance, we first need to find $G''_x(1)$.Substitute $t = 1$.Use $Var(X) = G''_x(1) + G'_x(1) - (G'_x(1))^2$ Example 7: The discrete random variable X has probability genera Given that the mean of X is 1.5, find the values of a and b .We first differentiate with respect to t. We need to make use of the quotient (or product) rule here.The mean is 1.5, so substitute $t = 1$ and equate to 1.5.Rearrange to make a the subject. Name this equation [1].We also know that $G_x(1) = 1$.Now we just need to solve [1] and [2] simultaneously. Substitute [2] into [1].Solve for b .Multiply through by 2.	$G'_{x}(1) = \frac{2(2+1)^{4}}{81} + \frac{4(2+1)^{3}}{81} = \frac{10}{3}$ $\therefore E(X) = \frac{10}{3}$ $G''_{x}(t) = \frac{2(2+t)^{4}}{81} + \frac{8t(2+t)^{3}}{81} + \frac{8t}{81}$ $\Rightarrow G''_{x}(1) = \frac{2(2+1)^{4}}{81} + \frac{8t(2+t)^{3}}{81} + \frac{8t}{81} + \frac{24t(2+1)}{81} + 24t(2+1$	$\frac{(2+t)^{3}}{81} + \frac{24t(2+t)^{3}}{81}$ $\frac{8t(2+1)^{3}}{81} = \frac{26}{3}$ $d b \text{ are positive constants.}$ $= 0 \text{ which cannot be a view. That means } b = 5$	Example 9: AFind the probaa) $Y = 3X$ b) $Y = 2X + 1$ c) $Y = 4X - 5$ a) Use $G_Y(t)$ b) Use $G_Y(t)$ c) Use $G_Y(t)$ c) Use $G_Y(t)$ c) Use $G_Y(t)$ c) Use $G_Y(t)$ a) Use the r r random varb) Find the the p.g.f's co since they aRearranging $E(Y^2) = V_t$ So, we need find $E(Y^2)$.Use $Var(Y)$	andom variable X has a pro- ability generating functions bility generating functions $(a) = t^b G_X(t^a)$ with $a = 3, b$ $(b) = t^b G_X(t^a)$ with $a = 2, b$ $(c) = t^b G_X(t^a)$ with $a = 2, b$ $(c) = t^b G_X(t^a)$ with $a = 4, b$ $(c) = t^b G_X(t^a)$ with $a = 4, b$ the discrete random variable $+0.6t)^2$ the values of n and p . ent observations X_1 and X_2 s to show that $E(Y^2) = 6.7$ esult that a binomially distri- able has p.g.f $(1 - p + pt)^n$ $(b) = f(Y) - f(Y)^2$. to find $E(Y)$ and $Var(Y)$ i $(Var(Y) = E(Y^2) - E(Y)^2$ $(r'(Y) + E(Y)^2)$. to find $E(Y)$ and $Var(Y)$ i	bability generati for the following = 0. = 3. $G_Y(t)$ = -5. G_Y	rot need to be able to prove it. ing function $G_x(t) = \frac{1}{2}t + \frac{1}{2}t^3$. grandom variables: $G_Y(t) = t^0 G_X(t^3) = \frac{1}{2}t^3 + \frac{1}{2}(t^3)^3 = \frac{1}{2}t^3 + \frac{1}{2}t^3$ $t) = t^3 G_X(t^2) = t^3 (\frac{1}{2}t^2 + \frac{1}{2}(t^2)^3) = \frac{1}{2}t^5 + \frac{1}{2}t^9$ $t) = t^{-5}G_X(t^4) = t^{-5}(\frac{1}{2}t^4 + \frac{1}{2}(t^4)^3) = \frac{1}{2}t^{-1} + \frac{1}{2}t^{-1} + \frac{1}{2}t^{-1}$ probability generating function given by the distribution of X. The random variable n = 2, p = 0.6 $G_Y(t) = G_{X_1}(t) \times G_{X_2}(t) = [G_X(t)]^2 + G_Y(t) = G_Y(1) = 4(0.6)(0.4 + 0.6t)^3 = 2.4$ $G'_Y(t) = 4(0.6)(0.4 + 0.6t)^3$ $E(Y) = G'_Y(1) = 4(0.6)(0.4 + 0.6t)^2 = 4.32$ $\therefore Var(Y) = 4.32 + 2.4 - 2.4^2 = 0.96$

 $\textcircled{\begin{time}{0.5ex}}$

+ Y, then
$$E(Z) = E(X) + E(Y)$$

