
A probability generating function is a mathematical function that is very useful for dealing with discrete distributions which take 
non-negative integer values (e.g. binomial or Poisson). A probability generating function can be used to generate all of the 
probabilities within a distribution. More notably, it can also be used to easily find probabilities that pertain to a sum of random 
variables (i.e. probabilities of the form  𝑃𝑃(𝑋𝑋 + 𝑌𝑌 = 𝑘𝑘)).  

The fundamentals 

 If a discrete random variable 𝑋𝑋 has probability mass function 𝑃𝑃(𝑋𝑋 = 𝑥𝑥), then the probability generating function of
𝑋𝑋 is given by 

 

For example, consider the discrete probability distribution X: 

Then the probability generating function of 𝑋𝑋 is  𝐺𝐺𝑋𝑋(𝑡𝑡) = 0.1𝑡𝑡0 + 0.2𝑡𝑡1 + 0.3𝑡𝑡2 + 0.4𝑡𝑡3. 

 The coefficients of 𝑡𝑡𝑥𝑥 are the probabilities 𝑃𝑃(𝑋𝑋 = 𝑥𝑥). 

 For any probability generating function, 𝐺𝐺𝑋𝑋(1) = 1. 

 The probability generating function for 𝑋𝑋 is also given by 𝐺𝐺𝑋𝑋(𝑡𝑡) = 𝐸𝐸(𝑡𝑡𝑋𝑋).

Probability generating functions of standard distributions 
You need to be able to use the probability generating functions for the poisson, binomial, negative binomial and geometric 
distributions.  

 If a discrete random variable 𝑋𝑋~𝐵𝐵(𝑛𝑛, 𝑝𝑝), the p.g.f of 𝑋𝑋 is given by 

 If a discrete random variable 𝑋𝑋~𝑁𝑁𝐵𝐵(𝑟𝑟, 𝑝𝑝), then the p.g.f o f 𝑋𝑋 is given by 

 If a discrete random variable 𝑋𝑋~𝑃𝑃𝑃𝑃(𝜆𝜆), then the p.g.f of X is given by 

 If a discrete random variable 𝑋𝑋~𝐺𝐺𝐺𝐺𝑃𝑃(𝑝𝑝), then the p.g.f of 𝑋𝑋 is given by  

These results are given to you in the formula booklet, but you also need to be able to prove them from first principles. To do 
so, you will need to use the definition of a probability generating function, 𝐺𝐺𝑥𝑥(𝑡𝑡) = ∑𝑃𝑃(𝑋𝑋 = 𝑥𝑥)𝑡𝑡𝑥𝑥, and substitute 𝑃𝑃(𝑋𝑋 = 𝑥𝑥) 
with the probability mass function for whichever distribution you are dealing with. 

Sums of independent random variables 

 If 𝑋𝑋 and 𝑌𝑌 are independent random variables with probability generating functions 𝑮𝑮𝑿𝑿(𝒕𝒕) and 
𝑮𝑮𝒀𝒀(𝒕𝒕), then the probability generating function of 𝑍𝑍 = 𝑋𝑋 + 𝑌𝑌 is given by:

 If 𝑍𝑍 = 𝑋𝑋 + 𝑌𝑌, then 𝐸𝐸(𝑍𝑍) = 𝐸𝐸(𝑋𝑋) + 𝐸𝐸(𝑌𝑌). 

Linear transformations of random variables 

 If the discrete random variable 𝑋𝑋  has probability generating function 𝑮𝑮𝑿𝑿(𝒕𝒕) , then the
probability generating function of the discrete random variable 𝒀𝒀 = 𝒂𝒂𝑿𝑿 + 𝒃𝒃 is given by

 

Mean and variance of a distribution 
You can differentiate the probability generating function  
to find the mean and variance for a probability distribution. 

 𝐸𝐸(𝑋𝑋) = 𝐺𝐺′𝑥𝑥(1)

 𝑉𝑉𝑉𝑉𝑟𝑟(𝑋𝑋) = 𝐺𝐺′′𝑥𝑥(1) + 𝐺𝐺′𝑥𝑥(1) − �𝐺𝐺′𝑥𝑥(1)�2

The following fact is also useful: 

 𝐺𝐺𝑛𝑛
𝑥𝑥(0) = 𝑃𝑃(𝑋𝑋 = 𝑛𝑛)
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𝑮𝑮𝑿𝑿(𝒕𝒕) = �𝑷𝑷(𝑿𝑿 = 𝒙𝒙)𝒕𝒕𝒙𝒙 

𝑥𝑥 0 1 2 3 
𝑃𝑃(𝑋𝑋 = 𝑥𝑥) 0.1 0.2 0.3 0.4 

Example 1: The probability generating function of a discrete random variable X is given by 𝐺𝐺𝑥𝑥(𝑡𝑡) = 𝑘𝑘(1+2𝑡𝑡 + 2𝑡𝑡2)2. 
(a) Find the value of k.
(b) Find 𝑃𝑃(𝑌𝑌 = 1). 

a) Use the fact that 𝐺𝐺𝑥𝑥(1) = 1. 𝐺𝐺𝑥𝑥(1) = 𝑘𝑘(1 + 2 + 2)2 = 25𝑘𝑘 
⇒ 25𝑘𝑘 = 1

Divide through by 25. 𝑘𝑘 =
1

25

b) 𝑃𝑃(𝑌𝑌 = 1) is given by the coefficient of 𝑡𝑡
in the expansion of 𝐺𝐺𝑥𝑥(𝑡𝑡).

𝐺𝐺𝑥𝑥(𝑡𝑡) =
1

25
(1 + 2𝑡𝑡 + 2𝑡𝑡2)(1 + 2𝑡𝑡 + 2𝑡𝑡2) 

=
1

25
(1 + 4𝑡𝑡 + 8𝑡𝑡2 + 8𝑡𝑡3 + 4𝑡𝑡4) 

=
1

25
+

4
25

𝑡𝑡 +
8

25
𝑡𝑡2 +

8
25

𝑡𝑡3 +
4

25
𝑡𝑡4 

𝑃𝑃(𝑋𝑋 = 1) = coefficient of 𝑡𝑡. ∴ 𝑃𝑃(𝑋𝑋 = 1) =
4

25

Example 2: The random variable 𝑋𝑋~𝐵𝐵(𝑛𝑛,𝑝𝑝).  
Prove, from first principles, that the probability generating function of 𝑋𝑋 
is given by 𝐺𝐺𝑥𝑥(𝑡𝑡) = (1−𝑝𝑝 + 𝑝𝑝𝑡𝑡)𝑛𝑛. 

Using 𝐺𝐺𝑥𝑥(𝑡𝑡) = ∑𝑃𝑃(𝑋𝑋 = 𝑥𝑥)𝑡𝑡𝑥𝑥: 
We have a sum with limits 𝑥𝑥 = 0 
and 𝑥𝑥 = 𝑛𝑛 since 𝑋𝑋 can only take 
values between 0 and 𝑛𝑛 
inclusive. 

𝑃𝑃(𝑋𝑋 = 𝑥𝑥) = �
𝑛𝑛
𝑥𝑥
� (𝑝𝑝)𝑥𝑥(1− 𝑝𝑝)𝑛𝑛−𝑥𝑥 

∴ 𝐺𝐺𝑥𝑥(𝑡𝑡)

= ��
𝑛𝑛
𝑥𝑥
� (𝑝𝑝)𝑥𝑥(1− 𝑝𝑝)𝑛𝑛−𝑥𝑥𝑡𝑡𝑥𝑥

𝑛𝑛

𝑥𝑥=0

 

Since 𝑝𝑝 and 𝑡𝑡 are raised to the 
same power, we can rewrite this 
as:  

𝐺𝐺𝑥𝑥(𝑡𝑡) = ��
𝑛𝑛
𝑥𝑥
� (𝑝𝑝𝑡𝑡)𝑥𝑥(1− 𝑝𝑝)𝑛𝑛−𝑥𝑥

𝑛𝑛

𝑥𝑥=0

 

But notice that this expression 
we have now is exactly the 
expansion of (𝑉𝑉 + 𝑏𝑏)𝑛𝑛, with 𝑉𝑉 =
𝑝𝑝𝑡𝑡 and 
𝑏𝑏 = 1 − 𝑝𝑝. This completes the 
proof. 

but ��
𝑛𝑛
𝑥𝑥
� (𝑝𝑝𝑡𝑡)𝑥𝑥(1 − 𝑝𝑝)𝑛𝑛−𝑥𝑥

𝑛𝑛

𝑥𝑥=0
= (𝑝𝑝𝑡𝑡 + 1 − 𝑝𝑝)𝑛𝑛 

∴ 𝐺𝐺𝑥𝑥(𝑡𝑡) = (1 − 𝑝𝑝 + 𝑝𝑝𝑡𝑡)𝑛𝑛 as 
required. 

𝐆𝐆𝐱𝐱(𝐭𝐭) = (𝟏𝟏−𝐩𝐩 + 𝐩𝐩𝐭𝐭)𝐧𝐧 

𝐆𝐆𝐱𝐱(𝐭𝐭) = �
𝐩𝐩𝐭𝐭

𝟏𝟏 − (𝟏𝟏 − 𝐩𝐩)𝐭𝐭
�
𝐫𝐫

𝐆𝐆𝐱𝐱(𝐭𝐭) = 𝐞𝐞𝛌𝛌(𝐭𝐭−𝟏𝟏) 

𝐆𝐆𝐱𝐱(𝐭𝐭) =
𝐩𝐩𝐭𝐭

𝟏𝟏 − (𝟏𝟏 − 𝐩𝐩)𝐭𝐭
 

Example 5: The random variable 𝑋𝑋~𝑁𝑁𝐺𝐺𝑁𝑁𝑉𝑉𝑡𝑡𝑁𝑁𝑁𝑁𝐺𝐺 𝐵𝐵(𝑟𝑟,𝑝𝑝). Prove, from first 
principles, that the probability generating function of 𝑋𝑋 can be written as 

𝐺𝐺𝑥𝑥(𝑡𝑡) = � 𝑝𝑝𝑝𝑝
1−(1−𝑝𝑝)𝑝𝑝

�
𝑟𝑟
. 

You may quote the following result without proof: 

��
𝑥𝑥 − 1
𝑟𝑟 − 1

� 𝑞𝑞𝑥𝑥−𝑟𝑟
∞

𝑥𝑥=𝑟𝑟

= (1 − 𝑞𝑞)−𝑟𝑟 where 𝑞𝑞 = 1 − 𝑝𝑝.     

Use 𝐺𝐺𝑥𝑥(𝑡𝑡) = ∑𝑃𝑃(𝑋𝑋 = 𝑥𝑥)𝑡𝑡𝑥𝑥 . 
We have an infinite sum since a NB 
distributed random variable can 
theoretically take any non-
negative integer value that is 
greater than or equal to 𝑟𝑟. 

𝑃𝑃(𝑋𝑋 = 𝑥𝑥) = �
𝑥𝑥 − 1
𝑟𝑟 − 1

� (𝑝𝑝)𝑟𝑟(𝑞𝑞)𝑥𝑥−𝑟𝑟 

∴ 𝐺𝐺𝑥𝑥(𝑡𝑡) = ��
𝑥𝑥 − 1
𝑟𝑟 − 1

� (𝑝𝑝)𝑟𝑟(𝑞𝑞)𝑥𝑥−𝑟𝑟𝑡𝑡𝑥𝑥
∞

𝑥𝑥=𝑟𝑟

 

We can rewrite  𝑡𝑡𝑥𝑥 as 𝑡𝑡𝑥𝑥−𝑟𝑟𝑡𝑡𝑟𝑟, so 
that the powers of 𝑡𝑡 match those 
of 𝑝𝑝 and 𝑞𝑞. 

𝐺𝐺𝑥𝑥(𝑡𝑡) = ��
𝑥𝑥 − 1
𝑟𝑟 − 1

� (𝑝𝑝)𝑟𝑟(𝑞𝑞)𝑥𝑥−𝑟𝑟𝑡𝑡𝑥𝑥−𝑟𝑟𝑡𝑡𝑟𝑟
∞

𝑥𝑥=𝑟𝑟

 

Now bringing the terms with equal 
powers together: = ��

𝑥𝑥 − 1
𝑟𝑟 − 1

� (𝑝𝑝𝑡𝑡)𝑟𝑟(𝑞𝑞𝑡𝑡)𝑥𝑥−𝑟𝑟
∞

𝑥𝑥=𝑟𝑟

 

Since (𝑝𝑝𝑡𝑡)𝑟𝑟 is independent of 𝑥𝑥, 
we can take it out of the sum: = (𝑝𝑝𝑡𝑡)𝑟𝑟��

𝑥𝑥 − 1
𝑟𝑟 − 1

� (𝑞𝑞𝑡𝑡)𝑥𝑥−𝑟𝑟
∞

𝑥𝑥=𝑟𝑟

 

Now we can use the result we 
were given in the question but 
replacing 𝑞𝑞 with 𝑞𝑞𝑡𝑡. 

��
𝑥𝑥 − 1
𝑟𝑟 − 1

� (𝑞𝑞𝑡𝑡)𝑥𝑥−𝑟𝑟
∞

𝑥𝑥=𝑟𝑟

= (1 − 𝑞𝑞𝑡𝑡)−𝑟𝑟 

∴ 𝐺𝐺𝑥𝑥(𝑡𝑡) = (𝑝𝑝𝑡𝑡)𝑟𝑟(1 − 𝑞𝑞𝑡𝑡)−𝑟𝑟

= �
𝑝𝑝𝑡𝑡

1− (1 − 𝑝𝑝)𝑡𝑡
�
𝑟𝑟

Example 3: The random variable 𝑋𝑋~𝑃𝑃𝑃𝑃(𝜆𝜆). Prove, from first principles, 
that the probability generating function of 𝑋𝑋 is given by 𝐺𝐺𝑥𝑥(𝑡𝑡) = 𝐺𝐺𝜆𝜆(𝑝𝑝−1).  

Using 𝐺𝐺𝑥𝑥(𝑡𝑡) = ∑𝑃𝑃(𝑋𝑋 = 𝑥𝑥)𝑡𝑡𝑥𝑥: 
We have an infinite sum since a 
Poisson distributed random 
variable can theoretically take any 
non-negative integer value.  

𝑃𝑃(𝑋𝑋 = 𝑥𝑥) =
𝐺𝐺−𝜆𝜆𝜆𝜆𝑥𝑥

𝑥𝑥!

∴ 𝐺𝐺𝑥𝑥(𝑡𝑡) = �
𝐺𝐺−𝜆𝜆𝜆𝜆𝑥𝑥

𝑥𝑥!
𝑡𝑡𝑥𝑥

∞

𝑥𝑥=0

 

Since 𝜆𝜆 and 𝑡𝑡 are raised to the 
same power, we can rewrite this 
as: 

𝐺𝐺𝑥𝑥(𝑡𝑡) = �
𝐺𝐺−𝜆𝜆(𝜆𝜆𝑡𝑡)𝑥𝑥

𝑥𝑥!

∞

𝑥𝑥=0

Since (𝜆𝜆𝑡𝑡)𝑥𝑥 is independent of 𝑥𝑥, 
we can take it outside the sum: = 𝐺𝐺−𝜆𝜆�

(𝜆𝜆𝑡𝑡)𝑥𝑥

𝑥𝑥!

∞

𝑥𝑥=0

But notice that �
(𝜆𝜆𝑡𝑡)𝑥𝑥

𝑥𝑥!

∞

𝑥𝑥=0

 is the 

Maclaurin expansion of 𝐺𝐺𝑥𝑥, 
just with 𝑥𝑥 replaced by 𝜆𝜆𝑡𝑡. 

𝐺𝐺𝑛𝑛 = �
𝑛𝑛𝑥𝑥

𝑥𝑥!

∞

𝑥𝑥=0

 , 𝑠𝑠𝑃𝑃 𝐺𝐺𝜆𝜆𝑝𝑝 = �
(𝜆𝜆𝑡𝑡)𝑥𝑥

𝑥𝑥!

∞

𝑥𝑥=0

∴ 𝐺𝐺𝑥𝑥(𝑡𝑡) =  𝐺𝐺−𝜆𝜆 𝐺𝐺𝜆𝜆𝑝𝑝 =  𝐺𝐺𝜆𝜆(𝑝𝑝−1). 

Example 4: The random variable 𝑋𝑋~𝐺𝐺𝐺𝐺𝑃𝑃(𝑝𝑝). Prove, from first principles, that 
the probability generating function of 𝑋𝑋 is given by 𝐺𝐺𝑥𝑥(𝑡𝑡) = 𝑝𝑝𝑝𝑝

1−(1−𝑝𝑝)𝑝𝑝
. 

Using 𝐺𝐺𝑥𝑥(𝑡𝑡) = ∑𝑃𝑃(𝑋𝑋 = 𝑥𝑥)𝑡𝑡𝑥𝑥: 
We have an infinite sum since a 
geometrically distributed random 
variable can theoretically take any 
non-negative integer value. 

𝑃𝑃(𝑋𝑋 = 𝑥𝑥) = 𝑝𝑝(1 − 𝑝𝑝)𝑥𝑥−1 

∴ 𝐺𝐺𝑥𝑥(𝑡𝑡) = �𝑝𝑝(1 − 𝑝𝑝)𝑥𝑥−1𝑡𝑡𝑥𝑥
∞

𝑥𝑥=1

 

Expanding the first few terms of 
the sum allows us to deduce that 
we are dealing with a geometric 
series. 

𝐺𝐺𝑥𝑥(𝑡𝑡) = 𝑝𝑝[𝑡𝑡 + (1 − 𝑝𝑝)1𝑡𝑡1 
+(1 − 𝑝𝑝)2𝑡𝑡2 + ⋯ ] 

We have a geometric series with 
𝑉𝑉 = 𝑝𝑝(1 − 𝑝𝑝)𝑡𝑡 and 𝑟𝑟 = (1 − 𝑝𝑝)𝑡𝑡. 
Our sum is an infinite sum so using 
the sum to infinity for a geometric 
series will give us the p.g.f. 

∴ 𝐺𝐺𝑥𝑥(𝑡𝑡) = 𝑆𝑆∞ =
𝑉𝑉

1 − 𝑟𝑟
=

𝑝𝑝𝑡𝑡 
1 − (1 − 𝑝𝑝)𝑡𝑡

 as required. 

Example 6: The probability generating function of a discrete random variable X is given by 𝐺𝐺𝑥𝑥(𝑡𝑡) = 𝑝𝑝2(2+𝑝𝑝)4

81
. 

Find the mean and variance of 𝑋𝑋. 

We first differentiate with respect to t. We need to make 
use of the product and chain rules here. 

𝐺𝐺′𝑥𝑥(𝑡𝑡) =
2𝑡𝑡(2 + 𝑡𝑡)4

81
+

4𝑡𝑡2(2 + 𝑡𝑡)3

81

To find the mean, substitute 𝑡𝑡 = 1. 
𝐺𝐺′𝑥𝑥(1) =

2(2 + 1)4

81
+

4(2 + 1)3

81
=

10
3

∴ 𝐸𝐸(𝑋𝑋) =
10
3

Now to find the variance, we first need to find 𝐺𝐺′′
𝑥𝑥(1). 𝐺𝐺′′𝑥𝑥(𝑡𝑡) =

2(2 + 𝑡𝑡)4

81
+

8𝑡𝑡(2 + 𝑡𝑡)3

81
+

8𝑡𝑡(2 + 𝑡𝑡)3

81
+

24𝑡𝑡(2 + 𝑡𝑡)3

81

Substitute 𝑡𝑡 = 1. 
⇒ 𝐺𝐺′′𝑥𝑥(1) =

2(2 + 1)4

81
+

8(2 + 1)3

81
+

8𝑡𝑡(2 + 1)3

81

+
24𝑡𝑡(2 + 1)3

81
=

26
3

Use 𝑉𝑉𝑉𝑉𝑟𝑟(𝑋𝑋) = 𝐺𝐺′′𝑥𝑥(1) + 𝐺𝐺′𝑥𝑥(1) − �𝐺𝐺′𝑥𝑥(1)�2
∴ 𝑉𝑉𝑉𝑉𝑟𝑟(𝑋𝑋) =

26
3

+
10
3
− �

10
3
�
2

=
8
9

Example 7: The discrete random variable X has probability generating function 𝐺𝐺𝑥𝑥(𝑡𝑡) = 𝑎𝑎𝑝𝑝
𝑏𝑏−𝑝𝑝2

 , where 𝑉𝑉 and 𝑏𝑏 are positive constants. 
Given that the mean of X is 1.5, find the values of 𝑉𝑉 and 𝑏𝑏.  

We first differentiate with respect to t. We need to make 
use of the quotient (or product) rule here. 𝐺𝐺′𝑥𝑥(𝑡𝑡) =

𝑉𝑉(𝑏𝑏 − 𝑡𝑡2) + 2𝑉𝑉𝑡𝑡2

(𝑏𝑏 − 𝑡𝑡2)2

The mean is 1.5, so substitute 𝑡𝑡 = 1 and equate to 1.5. 𝐺𝐺′𝑥𝑥(1) =
𝑉𝑉(𝑏𝑏 − 1) + 2𝑉𝑉

(𝑏𝑏 − 1)2 = 1.5 

Rearrange to make 𝑉𝑉 the subject. 
Name this equation [1]. 

1.5(𝑏𝑏 − 1)2 = 𝑉𝑉𝑏𝑏 − 𝑉𝑉 + 2𝑉𝑉 
∴ 𝑉𝑉(𝑏𝑏 + 1) = 1.5(𝑏𝑏 − 1)2 

⇒ 𝑉𝑉 =
1.5(𝑏𝑏 − 1)2

(𝑏𝑏 + 1)   [1] 

We also know that 𝐺𝐺𝑥𝑥(1) = 1. ⇒ 𝐺𝐺𝑥𝑥(1) =
𝑉𝑉

𝑏𝑏 − 1
= 1 

𝑉𝑉 = 𝑏𝑏 − 1   [2] 

Now we just need to solve [1] and [2] simultaneously. 
Substitute [2] into [1]. 

𝑏𝑏 − 1 =
1.5(𝑏𝑏 − 1)2

(𝑏𝑏 + 1)
(𝑏𝑏 − 1)(𝑏𝑏 + 1) = 1.5(𝑏𝑏 − 1)2 

Solve for 𝑏𝑏. (𝑏𝑏 − 1)[𝑏𝑏 + 1 − 1.5(𝑏𝑏 − 1)] = 0 
(𝑏𝑏 − 1)(−0.5𝑏𝑏 + 2.5) = 0 

Multiply through by 2. 

(𝑏𝑏 − 1)(5 − 𝑏𝑏) = 0 
So 𝑏𝑏 = 5 or 𝑏𝑏 = 1. But if 𝑏𝑏 = 1, then 𝑉𝑉 = 0 which cannot be a 
solution since we are told that 𝑉𝑉 is positive. That means 𝑏𝑏 = 5 
and 𝑉𝑉 = 5 − 1 = 4. 

𝑮𝑮𝒁𝒁(𝒕𝒕) = 𝑮𝑮𝑿𝑿(𝒕𝒕) × 𝑮𝑮𝒀𝒀(𝒕𝒕) 

𝑮𝑮𝒀𝒀(𝒕𝒕) = 𝒕𝒕𝒃𝒃𝑮𝑮𝑿𝑿(𝒕𝒕𝒂𝒂) 

Example 8: A random variable X has a probability generating function 𝐺𝐺𝑋𝑋(𝑡𝑡) = 4
(3−𝑝𝑝)2

. 

A second random variable 𝑌𝑌 has a probability generating function 𝐺𝐺𝑌𝑌(𝑡𝑡) = 𝑝𝑝
(3−2𝑝𝑝)3

. 
Given that X and Y are independent, 
(a) write down the probability generating function for 𝑍𝑍 = 𝑋𝑋 + 𝑌𝑌. 
(b) find 𝐸𝐸(𝑍𝑍). 

a) We multiply the probability
generating functions together to
obtain the p.g.f of 𝑍𝑍.

𝐺𝐺𝑍𝑍(𝑡𝑡) = 𝐺𝐺𝑋𝑋(𝑡𝑡) × 𝐺𝐺𝑌𝑌(𝑡𝑡) 
 

𝐺𝐺𝑍𝑍(𝑡𝑡) =
4

(3 − 𝑡𝑡)2
×

𝑡𝑡
(3 − 2𝑡𝑡)3

=
4𝑡𝑡

(3 − 𝑡𝑡)2(3 − 2𝑡𝑡)3

b) To find the mean, we can use 
𝐸𝐸(𝑍𝑍) = 𝐸𝐸(𝑋𝑋) + 𝐸𝐸(𝑌𝑌). So, we start by
finding 𝐸𝐸(𝑋𝑋).

𝐺𝐺′𝑋𝑋(𝑡𝑡) = 4(3 − 𝑡𝑡)−2 
𝐺𝐺′𝑋𝑋(1) = 4(3 − 1)−2 = 1 = 𝐸𝐸(𝑋𝑋) 

Find 𝐸𝐸(𝑌𝑌). 
𝐺𝐺′𝑌𝑌(𝑡𝑡) = 6𝑡𝑡(3−2𝑡𝑡)−4 
𝐺𝐺′𝑌𝑌(1) = 6(3−2)−4 = 6 = 𝐸𝐸(𝑌𝑌) 

Use 𝐸𝐸(𝑍𝑍) = 𝐸𝐸(𝑋𝑋) + 𝐸𝐸(𝑌𝑌). ⇒ 𝐸𝐸(𝑍𝑍) = 𝐸𝐸(𝑋𝑋) + 𝐸𝐸(𝑌𝑌) = 1 + 6 = 7

Example 9: A random variable X has a probability generating function 𝐺𝐺𝑥𝑥(𝑡𝑡) = 1
2
𝑡𝑡 + 1

2
𝑡𝑡3. 

Find the probability generating functions for the following random variables: 
a) 𝑌𝑌 = 3𝑋𝑋
b) 𝑌𝑌 = 2𝑋𝑋 + 3
c) 𝑌𝑌 = 4𝑋𝑋 − 5

a) Use 𝑮𝑮𝒀𝒀(𝒕𝒕) = 𝒕𝒕𝒃𝒃𝑮𝑮𝑿𝑿(𝒕𝒕𝒂𝒂) with 𝑉𝑉 = 3, 𝑏𝑏 = 0. 𝐺𝐺𝑌𝑌(𝑡𝑡) = 𝑡𝑡0𝐺𝐺𝑋𝑋(𝑡𝑡3) =
1
2
𝑡𝑡3 +

1
2

(𝑡𝑡3)3 =
1
2
𝑡𝑡3 +

1
2
𝑡𝑡9 

b) Use 𝑮𝑮𝒀𝒀(𝒕𝒕) = 𝒕𝒕𝒃𝒃𝑮𝑮𝑿𝑿(𝒕𝒕𝒂𝒂) with 𝑉𝑉 = 2, 𝑏𝑏 = 3. 𝐺𝐺𝑌𝑌(𝑡𝑡) = 𝑡𝑡3𝐺𝐺𝑋𝑋(𝑡𝑡2) = 𝑡𝑡3 �
1
2
𝑡𝑡2 +

1
2

(𝑡𝑡2)3� =
1
2
𝑡𝑡5 +

1
2
𝑡𝑡9 

c) Use 𝑮𝑮𝒀𝒀(𝒕𝒕) = 𝒕𝒕𝒃𝒃𝑮𝑮𝑿𝑿(𝒕𝒕𝒂𝒂) with 𝑉𝑉 = 4, 𝑏𝑏 = −5. 𝐺𝐺𝑌𝑌(𝑡𝑡) = 𝑡𝑡−5𝐺𝐺𝑋𝑋(𝑡𝑡4) = 𝑡𝑡−5 �
1
2
𝑡𝑡4 +

1
2

(𝑡𝑡4)3� =
1
2
𝑡𝑡−1 +

1
2
𝑡𝑡7 

Example 10: The discrete random variable 𝑋𝑋~𝐵𝐵(𝑛𝑛,𝑝𝑝) has probability generating function given by  
𝑮𝑮𝑿𝑿(𝒕𝒕) = (𝟎𝟎.𝟒𝟒+𝟎𝟎.𝟔𝟔𝐭𝐭)𝟐𝟐 

a) Write down the values of 𝑛𝑛 and 𝑝𝑝. 
Two independent observations 𝑋𝑋1 and 𝑋𝑋2 are taken from the distribution of 𝑋𝑋. The random variable
𝑌𝑌 = 𝑋𝑋1 + 𝑋𝑋2.
b) Use calculus to show that 𝐸𝐸(𝑌𝑌2) = 6.72.

a) Use the result that a binomially distributed
random variable has p.g.f (𝟏𝟏 − 𝐩𝐩+𝐩𝐩𝐭𝐭)𝒏𝒏. 𝑛𝑛 = 2,𝑝𝑝 = 0.6 

b) Find the p.g.f of 𝑌𝑌. This is found by multiplying 
the p.g.f’s of 𝑋𝑋1 and 𝑋𝑋2, which are both the same
since they are from the distribution of X. 

𝐺𝐺𝑌𝑌(𝑡𝑡) = 𝐺𝐺𝑋𝑋1(𝑡𝑡) × 𝐺𝐺𝑋𝑋2(𝑡𝑡) = [𝐺𝐺𝑋𝑋(𝑡𝑡)]2 
∴ 𝐺𝐺𝑌𝑌(𝑡𝑡) = (0.4+0.6t)4 

Rearranging 𝑉𝑉𝑉𝑉𝑟𝑟(𝑌𝑌) = 𝐸𝐸(𝑌𝑌2) − 𝐸𝐸(𝑌𝑌)2 gives  
𝐸𝐸(𝑌𝑌2) = 𝑉𝑉𝑉𝑉𝑟𝑟(𝑌𝑌) + 𝐸𝐸(𝑌𝑌)2. 
So, we need to find 𝐸𝐸(𝑌𝑌) and 𝑉𝑉𝑉𝑉𝑟𝑟(𝑌𝑌) in order to 
find 𝐸𝐸(𝑌𝑌2). 

𝐺𝐺′𝑌𝑌(𝑡𝑡) = 4(0.6)(0.4 + 0.6𝑡𝑡)3 
𝐸𝐸(𝑌𝑌) = 𝐺𝐺′𝑌𝑌(1) = 4(0.6)(0.4 + 0.6)3 = 2.4 
𝐺𝐺′′𝑌𝑌(𝑡𝑡) = 4(3)(0.6)2(0.4 + 0.6𝑡𝑡)2 
𝐺𝐺′′𝑌𝑌(1) = 4(3)(0.6)2(0.4 + 0.6)2 = 4.32 

Use 𝑉𝑉𝑉𝑉𝑟𝑟(𝑌𝑌) = 𝐺𝐺′′𝑌𝑌(1) + 𝐺𝐺′𝑌𝑌(𝑡𝑡) − 𝐺𝐺′𝑌𝑌(𝑡𝑡)2. ∴ 𝑉𝑉𝑉𝑉𝑟𝑟(𝑌𝑌) = 4.32 + 2.4 − 2.42 = 0.96 

Use 𝐸𝐸(𝑌𝑌2) = 𝑉𝑉𝑉𝑉𝑟𝑟(𝑌𝑌) + 𝐸𝐸(𝑌𝑌)2. 𝐸𝐸(𝑌𝑌2) = 0.96 + 2.42 = 6.72 

Binomial distribution Poisson distribution 

Geometric distribution Negative binomial distribution 

This means that substituting 𝑡𝑡 = 0 into 
the 𝑛𝑛𝑝𝑝ℎ  derivative of 𝐺𝐺𝑋𝑋(𝑡𝑡) will give you 𝑃𝑃(𝑋𝑋 = 𝑛𝑛). 

You are given this result and you 
do not need to be able to prove it. 

You can see that the coefficients of 
𝑡𝑡𝑥𝑥 are the probabilities 𝑃𝑃(𝑋𝑋 = 𝑥𝑥) 

You are not given this result. You do 
not need to be able to prove it. 

https://bit.ly/pmt-edu
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https://bit.ly/pmt-cc

n!
1 




