# **Discrete Random Variables and Expectation II Cheat Sheet**

### **Discrete Uniform Distribution**

A random variable X with a discrete uniform distribution can be written as  $X \sim U(n)$ . The probability of obtaining each integer from 1 to n is equal and is given by  $\frac{1}{n}$ :

$$P(X = x) = \frac{1}{n}$$
  $x = 1, 2, 3 \dots n$ 

A common example of modelling with the discrete uniform distribution is rolling a fair six-sided dice. It can be written as  $X \sim U(6)$ . X can take the values of any whole number between 1 to 6, and the probability of obtaining each of these is  $\frac{1}{c}$ .

| x        | 1 | 2 | 3 | 4 | 5 | 6 |
|----------|---|---|---|---|---|---|
| P(X = x) | 1 | 1 | 1 | 1 | 1 | 1 |
|          | 6 | 6 | 6 | 6 | 6 | 6 |

#### Modelling with the Discrete Uniform Distribution

Sometimes a random variable has equal chance of taking any integers within a range, but the range does not begin with 1, or the random variable can only take certain integers in the range. In this case, the random variable can be modelled using linear transformation.

Example 1: A random variable Y can take any even integer ranging from 10 to 30. The probability of Y taking each of these values is equal. Show that Y can be written in the form aX + b and find the value of n for  $X \sim U(n)$ .

| Write Y as a linear transformation of X.             | Y = aX + b                                         |
|------------------------------------------------------|----------------------------------------------------|
| Since <i>Y</i> can only take even numbers, $a = 2$ . | Y = 2X + b                                         |
| When $X = 1, Y = 10$ .                               | 10 = 2(1) + b<br>b = 8<br>$\Rightarrow Y = 2X + 8$ |
| Find $n$ such that $Y = 30$ when $x = n$ .           | $30 = 2n + 8$ $2n = 22 \Rightarrow n = 11$         |

#### Mean of the Discrete Uniform Distribution

For a random variable X with a discrete uniform distribution  $X \sim U(n)$ , the mean is given by:

$$E(X) = \frac{n+1}{2}$$

**Example 2:** The random variable X has a discrete uniform distribution  $X \sim U(n)$ , show that  $E(X) = \frac{n+1}{2}$ .

| Find $E(X)$ by multiplying each possible value of X by the corresponding probability, then adding them up together. For $X \sim U(n)$ , X can be any integer from 1 up to n, and the probability for each is $\frac{1}{n}$ . | $E(X) = \sum x_i p_i$<br>= 1 × $\frac{1}{n}$ + 2 × $\frac{1}{n}$ + 3 × $\frac{1}{n}$ + + n × $\frac{1}{n}$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Factorise out $\frac{1}{n}$ .                                                                                                                                                                                                | $=\frac{1}{n} \times (1+2+3\dots + n)$                                                                     |
| Rewrite $(1 + 2 + 3 + \dots + n)$ as $\sum_{r=1}^{n} r$ .                                                                                                                                                                    | $=\frac{1}{n}\sum_{r=1}^{n}r$                                                                              |
| Use the result for the sum of the first <i>n</i> positive integers $\left(\sum_{r=1}^{n} r = \frac{n(n+1)}{2}\right)$ to simplify the formula and end the proof.                                                             | $= \frac{1}{n} \times \frac{n(n+1)}{2}$ $= \frac{n+1}{2}$                                                  |

resources tuition

Variance of the Discrete Uniform Distribution

For a random variable X with a discrete uniform distribution  $X \sim U(n)$ , the variance is given by:

$$Var(X) = \frac{1}{2}$$

**Example 3:** The random variable X has a discrete uniform distribution  $X \sim U(n)$ . Show that  $Var(X) = \frac{n^2 - 1}{12}$ .

| Find $E(X^2)$ .                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |  |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
| Use the result $\sum_{r=1}^{n} r^2 = \frac{r}{e}$ | (n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1)(2n+1 | 1). |  |
| Find $E(X)$ . (Refer to Exam                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |  |
| Use the formula of variance                       | e.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |  |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |  |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |  |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |  |

| <b>Example 3:</b> A random variable X has the discrete uniform distribution $X \sim U(8)$ . Find its |
|------------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------------|

| Use the formula $E(X)$ | $=\frac{n+1}{2}$ to find $E(X)$ | when $n = 8$ . |
|------------------------|---------------------------------|----------------|
|------------------------|---------------------------------|----------------|

Use the formula  $Var(X) = \frac{n^2-1}{12}$  to find Var(X) when n = 8.



## **AQA A Level Further Maths: Statistics**

 $\frac{n^2 - 1}{12}$ 

$$E(X^{2}) = \sum x_{i}^{2} p_{i}$$

$$= 1^{2} \times \frac{1}{n} + 2^{2} \times \frac{1}{n} + 3^{2} \times \frac{1}{n} + \dots + n^{2} \times \frac{1}{n}$$

$$= \frac{1}{n} \times (1^{2} + 2^{2} + 3^{2} \dots + n^{2})$$

$$= \frac{1}{n} \times \sum_{r=1}^{n} r^{2}$$

$$= \frac{1}{n} \times \frac{n}{6} (n+1)(2n+1)$$

$$= \frac{1}{6} (n+1)(2n+1)$$

$$E(X) = \frac{n+1}{2}$$

$$Var(X) = E(X^{2}) - (E(X))^{2}$$

$$= \frac{1}{6} (n+1)(2n+1) - \left(\frac{n+1}{2}\right)^{2}$$

$$= \frac{1}{6} (n+1)(2n+1) - \frac{1}{4} (n+1)(n+1)$$

$$= (n+1) \left(\frac{2n+1}{6} - \frac{n+1}{4}\right)$$

$$= (n+1) \left(\frac{4n+2-3n-3}{12}\right)$$

$$= (n+1) \left(\frac{n-1}{12}\right)$$

$$= \frac{n^{2}-1}{12}$$

mean and variance.

| $E(X) = \frac{8+1}{2}$ $= \frac{9}{2}$             |  |
|----------------------------------------------------|--|
| $Var(X) = \frac{8^2 - 1}{12}$<br>= $\frac{63}{12}$ |  |

