Continuous Random Variables II Cheat Sheet

Mean, Variance and Standard Deviation of a Given Probability Density Function

Expectation of a Continuous Random Variable

The mean, or the expectation of a continuous variable *X*, which is defined on the domain a < x < b, is given by:

$$E(X) = \int_{a}^{b} x f(x) dx$$

Expectation of the Square of a Continuous Random Variable The expectation of the square of a continuous variable X which is defined for the domain a < x < b, is given

$$E(X^2) = \int_a^b x^2 f(x) \, dx$$

Variance of a Continuous Random Variable The variance of a continuous random variable can be calculated by:

$$Var(X) = E(X^2) - (E(X))^2$$

The standard deviation can be obtained by square rooting the variance.

Example 1: The continuous random variable *X* has the probability density function:

$$f(x) = \begin{cases} \frac{3}{20}(4x^2 - x^3) & 0 < x < 2\\ 0 & \text{otherwise} \end{cases}$$

Find the standard deviation of X.

by:

Find <i>E</i> (<i>X</i>).	$E(X) = \int_0^2 x \times \frac{3}{20} (4x^2 - x^3) dx$ = $\frac{3}{20} \int_0^2 4x^3 - x^4 dx$ = $\frac{3}{20} \left[x^4 - \frac{x^5}{5} \right]_1^2$ = $\frac{3}{20} \left[\left(16 - \frac{32}{5} \right) - \left(1 - \frac{1}{5} \right) \right]$ = $\frac{3}{20} \left(\frac{48}{5} - \frac{4}{5} \right)$ = 1.32
Find <i>E</i> (<i>X</i> ²).	$E(X^2) = \int_0^2 x^2 \times \frac{3}{20} (4x^2 - x^3) dx$ = $\frac{3}{20} \int_0^2 4x^4 - x^5 dx$ = $\frac{3}{20} \left[\frac{4x^5}{5} - \frac{x^6}{6} \right]_1^2$ = $\frac{3}{20} \left[\left(\frac{128}{5} - \frac{64}{6} \right) - \left(\frac{4}{5} - \frac{1}{6} \right) \right]$ = $\frac{3}{20} \left(\frac{224}{15} - \frac{19}{30} \right)$ = 2.145
Calculate the variance using $E(X^2) - (E(X))^2$.	$Var(X) = 2.145 - (1.32)^2$ = 0.4026
Calculate the standard deviation as the square root of variance.	$\sigma = \sqrt{0.4026}$ = 0.635 (3s.f.)

Functions of a Continuous Random Variable

Expectation and Variance of a Linear Function of a Continuous Random Variable

When a variable X undergoes a linear transformation, such as multiplication by the constant a, or adding a constant b, the expectation and variance of the new variable can be found in terms of E(X) and Var(X).

E(aX+b) = aE(X) + b

 $Var(aX + b) = a^2 Var(X)$

Example 2: The continuous random variable *X* has the expectation and variance

E(X) = 1.24

Var(X) = 1.86

Given that Y is a continuous random variable such that Y = 3X - 2, find:

a) *E*(*Y*) **b)** Var(Y)

c) $E(Y^2)$

d) the standard deviation of Y

a) Find $E(Y)$ from $E(X)$.	E(Y) = 3E(X) - 2 = 3(1.24) - 2 = 1.72
b) Find $Var(Y)$ from $Var(X)$.	$Var(Y) = 3^2(1.86)$ = 16.74
c) Find $E(Y^2)$ using $Var(Y) = E(Y^2) - (E(Y))^2$.	$16.74 = E(Y^2) - (1.72)^2$ $E(Y^2) = 16.74 - 2.9584$ = 13.7816
d) Calculate the standard deviation from $Var(Y)$.	$\sigma = \sqrt{16.74}$ = 4.09 (3s.f.)

Expectation of a General Function of a Continuous Random Variable

The expectation of any general function g(x) for a continuous random variable X with the probability density function f(x) can be found by:

$$E(g(x)) = \int_{-\infty}^{\infty} g(x) f(x) \, dx$$

Example 3: The continuous random variable *X* has the probability density function:

$$f(x) = \begin{cases} 3x^2 & 0 < x < 1\\ 0, & \text{otherwise} \end{cases}$$

 $\textcircled{\blue}{\blue}$

Find $E\left(\frac{4}{r}\right)$.

AQA A Level Further Maths: Statistics

Random Variable

By using the formula for the expectation of a general function of a continuous random variable, the variance and standard deviation can also be found for non-linear functions of a continuous random variable.

Find $Var(X^2)$ and the standard deviation.

Let $Y = X^2$ so $Var(X^2) = Var$ Find E(Y).

Find $E(Y^2)$.

Find Var(Y).

Find the standard deviation from

www.pmt.education **Dofy** PMTEducation

Mean, Variance and Standard Deviation of Non-Linear Functions of a Continuous

Example 4: The continuous random variable *X* has the probability density function:

$$f(x) = \begin{cases} \frac{3x}{4}(2-x) & 0 < x < 2\\ 0, & \text{otherwise} \end{cases}$$

$(Y) = E(Y^2) - (E(Y))^2.$	$E(Y) = E(X^2)$
	$= \int_0^2 x^2 \times \frac{3x}{4} (2-x) dx$
	$=\frac{3}{4}\int_{0}^{2}2x^{3}-x^{4}dx$
	$=\frac{3}{4}\left[\frac{2x^4}{4}-\frac{x^5}{5}\right]_0^2$
	$=\frac{3}{4}\left(\frac{32}{4}-\frac{32}{5}-0\right)$
	= 1.2
	$E(Y^2) = E((X^2)^2)$
	$= E(X^4)$
	$= \int_0^2 x^4 \times \frac{3x}{4} (2-x) dx$
	$=\frac{3}{4}\int_{0}^{2}2x^{5}-x^{6}dx$
	$=\frac{3}{4}\left[\frac{2x^{6}}{6}-\frac{x^{7}}{7}\right]_{0}^{2}$
	$=\frac{3}{4}\left(\frac{128}{6}-\frac{128}{7}-0\right)$
	$=\frac{16}{7}$
	$Var(Y) = E(Y^{2}) - (E(Y))^{2}$ $= \frac{16}{10} - (1.2)^{2}$
	7 = 0.846 (3s.f.) Var(X ²) = 0.846 (3s.f.)
m Var(Y).	$\sigma = \sqrt{0.84571}$
	= 0.920(38.1.)

