Chi-Squared Tests for Association II Cheat Sheet

Yates' Correction (A Level Only)

In a chi-squared test for association, for two independent variables, the calculated χ^2 value is assumed to follow the distribution of χ^2_{ν} , where ν is the degrees of freedom and is given by:

v = (number of rows - 1)(number of columns - 1)

For a 2 \times 2 contigency table, when v = 1, the approximation is not appropriate. A better approximation is to use Yates' correction, which is given by:

 $\chi_{\text{Yates}}^2 = \sum \frac{(|O_i - E_i| - 0.5)^2}{E_i}$

Example 1: The contingency table below shows the gender of pupils in a class and whether they have passed or failed an exam. Test, at the 10% significance level, whether gender and exam grade are independent.

	Male	Female
Failed	8	7
Passed	19	16

	H_0 : Gender and exam grade are independent. H_1 : Gender and exam grade are not independent.				
State the null and alternative hypotheses.					
Find the row total, column total and overall total from the contingency table.					
		Male	Female	Total	
	Failed	8	7	15	
	Passed	19	16	35	
	Total	27	23	50	
Find the expected value for each cell using					
$E_i = 1000000000000000000000000000000000000$		Ma	ale	Female	
	Failed	$\frac{15 \times 27}{50}$	$\frac{7}{-} = 8.1$	$\frac{15 \times 23}{50} = 6.9$	
	Passed	$\frac{35 \times 27}{50}$	$\frac{35 \times 27}{50} = 18.9 \qquad \frac{35 \times 23}{50} = 1$		
Calculate the degrees of freedom.	v = (2 - 1)(2 - 1) = 1				
Since $v = 1$, use Yates' correction to calculate the value of χ^2 .	$\chi_{\text{Yates}}^2 = \sum \frac{(O_i - E_i - 0.5)^2}{E_i}$				
	$=\frac{(8-8.1 -0.5)^2}{8.1}+\frac{(7-6.9 -0.5)^2}{6.9}+\frac{(19-18.9 -0.5)^2}{18.9}$				
	$+\frac{(16-16.1 -0.5)^2}{16.1}$				
	$=\frac{(-0.4)^2}{8.1} + \frac{(-0.4)^2}{6.9} + \frac{(-0.4)^2}{18.9} + \frac{(-0.4)^2}{16.1}$				
	= 0.0613 (3s.f.)				
Compare the chi-squared value with the critical value and state your	0.0613 < 2.706				
	\therefore Do not reject H_0 . There is insufficient evidence to show that gender and examining grades are dependent.				

Sometimes it is not apparent that Yates' correction needs to be used from the beginning. If a contingency table becomes a 2×2 table after 2 or more rows or columns are merged, Yates' correction needs to be used as well.

Example 2: The contingency table below shows the age of applicants to a company and the outcome of their application. Test, at 10% significance level, whether applicants' age and their application outcome are independent.

	≤ 25	26 - 35	> 35
Accepted	14	5	1
Rejected	36	38	6

	H_0 : Applicants' age and their application outcomes are independent. H_1 : Applicants' age and their application outcomes are dependent.						
State the null and alternative hypotheses.							
Find the row total, column total and overall total for the							
contingency table.		≤ 25	2	26 - 35	> 35	Total	
	Accepted	14		5	1	20	
	Rejected	36		38	6	80	
	Total	50		43	7	100	
Construct a contingency table showing the expected							
values using $E_i = \frac{\text{row total} \times \text{column total}}{\text{overall total}}.$			≤ 25	26	6 – 35	> 35	
	Accepted	$\frac{20}{1}$	$\frac{\times 50}{00} = 10$	$\frac{20 \times 100}{100}$	$\frac{43}{2} = 8.6$	$\frac{20 \times 7}{100} = 1.4$	
	Rejected	$\frac{80}{1}$	$\frac{80 \times 50}{100} = 40$ $\frac{80 \times 50}{100}$		$\frac{43}{100} = 34.4$ $\frac{80 \times 7}{100} = 5.6$		
Notice that the last column has expected values of < 5 .							
so the last two columns need to be merged.			≤ 25			≥ 26	
	Accepted			10		8.6 + 1.4 = 10	
	Rejected	Rejected		40		34.4 + 5.6 = 40	
Calculate the degrees of freedom from the merged table	n = (2 - 1)(2 - 1)						
	v = (2 - 1)(2 - 1) = 1						
Since $v = 1$, calculate χ^2 using Yates' correction.	$\chi_{\text{Yates}}^2 = \sum \frac{(O_i - E_i - 0.5)^2}{E_i}$						
	$=\frac{(14-10 -0.5)^2}{10}+\frac{(6-10 -0.5)^2}{10}+\frac{(36-40 -0.5)^2}{40}+\frac{(44-40 -0.5)^2}{40}$						
	$=\frac{(3.5)^2}{10} + \frac{(3.5)^2}{10} + \frac{(3.5)^2}{40} + \frac{(3.5)^2}{40}$						
	= 3.06	525					
Compare χ^2 with the critical value and state your conclusion	3.0625 > 2.706						
conclusion.	\therefore Reject H_0 . There is sufficient evidence to show that applicants' age and their application outcome are dependent.						

AQA A Level Further Maths: Statistics

$$v = (2-1)(2-1)$$

$$\frac{(|-0.5)^2}{3_t} + \frac{(|6-10|-0.5)^2}{10} + \frac{(|36-40|-0.5)^2}{40} + \frac{(|44-40|-0.5)^2}{40} + \frac{(|44-40|-0.5)^2}{40} + \frac{(5)^2}{40} + \frac{(3.5)^2}{40} + \frac{(3.5$$

