Chi-Squared Tests for Association I Cheat Sheet

resources tuition course:

Chi-squared tests are used to test if two variables are independent from one another. In other words, it tests whether there is a statistically significant relationship between two variables, which are usually categorical variables.

Contingency Tables

A contingency table can be used to show the observed frequency distribution or expected frequency of two variables. Observed frequency is denoted by ∂_i . Expected frequency is denoted by E_i and can be calculated for each cell in a contingency table using the following formula:

$E_i = \frac{\text{row total} \times \text{column total}}{1 + 1 + 1 + 1 + 1}$ overall total

Example 1: The contingency table below shows the observed frequency distribution between gender of customer and the colour of shoes bought. Construct a contingency table showing the expected frequency.

	Male	Female
Black	39	28
Blue	9	8
Green	6	5
Red	5	6
White	34	40
Yellow	7	13

Find the row total, column total and overall total from the contingency table.	Black: $39 + 28 = 67$ Blue: $9 + 8 = 17$ Green: $6 + 5 = 11$ Red: $5 + 6 = 11$ White: $34 + 40 = 74$ Yellow: $7 + 13 = 20$ Male: $39 + 9 + 6 + 5 + 34 + 7 = 100$ Female: $28 + 8 + 5 + 6 + 40 + 13 = 100$ Overall total: $100 + 100 = 200$				
Find the expected value for each cell using		Male	Female		
$E_i = \frac{\text{row total} \times \text{column total}}{\text{overall total}}.$	Black	$\frac{67 \times 100}{200} = 33.5$	$\frac{67 \times 100}{200} = 33.5$		
	Blue	$\frac{17 \times 100}{200} = 8.5$	$\frac{17 \times 100}{200} = 8.5$		
	Green	$\frac{11 \times 100}{200} = 5.5$	$\frac{11 \times 100}{200} = 5.5$		
	Red	$\frac{11 \times 100}{200} = 5.5$	$\frac{11 \times 100}{200} = 5.5$		
	White	$\frac{74 \times 100}{200} = 37$	$\frac{74 \times 100}{200} = 37$		
	Yellow	$\frac{20 \times 100}{200} = 10$	$\frac{20 \times 100}{200} = 10$		

Chi-Squared Values and Degrees of Freedom

Chi-squared value is the test statistic used for hypothesis testing in a chi-squared test. A low chi-squared value shows a high correlation between the two variables investigated. It is calculated from the observed frequency O_i and expected frequency E_i using the formula:

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

The degree of freedom, which can be written as v, is a parameter of the chi-squared distribution and can be found from the number of rows and columns of the contingency table. For a contingency table with *n* rows and *m* columns, the degree of freedom is given by:

v = (n-1)(m-1)

The critical value at a given significance level is dependent on the degrees of freedom and is given in the formula book. If the chi-squared value calculated is greater than the critical value, there is sufficient evidence to suggest the two variables investigated are dependent.

When using chi-squared tests for hypothesis testing, the null hypothesis always states that two variables are independent. By assuming that, expected frequencies can be calculated.

To calculate chi-squared value, it is important to ensure that the expected frequency in each cell is greater than 5, as the chi-squared distribution is an approximation which is invalid for $E_i \leq 5$. When this happens, two or more columns can be merged.

Sources of Association

A contingency table showing $\frac{(O_i - E_i)^2}{E_i}$ will reveal the sources of association if hypothesis testing shows that the variables are dependent. Cells with larger values for

 $\frac{(o_i - E_i)^2}{E_i}$ are likely to be the sources of association and can be interpreted in context.

Example 2: The contingency table below shows the favourite movie genre of different age groups. Test, at 5% significance level, whether age group and favourite movie genre are two independent variables. Suggests the sources of association.

	≤ 20	21 - 30	31 - 40	> 40
Action	17	14	11	3
Comedy	8	11	8	7
Horror	9	22	14	5
Romance	6	6	21	1

	H_0 : Age group and favourite movie genre are independent.							
Construct a contingency table showing the expected	H_1 : Age gro	≤ 20	$\frac{1}{21-30}$		31-40		> 40	7
values using $E_i = \frac{\text{row total} \times \text{column total}}{\text{overall total}}.$	Action	$\frac{45 \times 40}{163} = 11.043$	45	$\frac{\times 53}{163} = 14.910$	$\frac{45 \times 54}{163} =$	= 14.908	$\frac{45 \times 16}{163} = 4.417$	-
	Comedy	$\frac{34 \times 40}{163} = 8.344$	34	$\frac{1}{163} \times \frac{53}{11.055} = 11.055$	$\frac{34 \times 54}{163} =$	= 11.264	$\frac{34 \times 16}{163} = 3.337$	
	Horror	$\frac{50 \times 40}{163} = 12.270$	50 1	$\frac{\times 53}{163} = 16.258$	$\frac{50 \times 54}{163} =$	= 16.564	$\frac{50 \times 16}{163} = 4.908$	
	Romance	$\frac{34 \times 40}{163} = 8.344$	34 1	$\frac{1}{163} \times \frac{53}{1} = 11.055$	$\frac{34 \times 54}{163} =$	= 11.264	$\frac{34 \times 16}{163} = 3.337$	
Notice that the last column has expected values of		≤ 20		21 - 3	0		> 30	_
\leq 5, so the last two columns need to be merged.	Action	11.043	11.043		14.910		14.908 + 4.417 = 19.325	
	Comedy	8.344		11.055	5	11.264 +	- 3.337 = 14.601	
	Horror	12.270		16.258	3	16.564 +	-4.908 = 21.472	
	Romance	8.344	.344 11.055 11.264 + 3.337 = 14.60			-3.337 = 14.601		
Find v using the table with merged columns and state the critical value at 5% significance level. This is the value such that $P(X \le CV) = 0.95$.	v = (3 - 1)(4 - 1) = 6 CV = 12.592							
Construct the contingency table for $\frac{(O_i - E_i)^2}{2}$, keeping		≤ 20		21 - 3	0		> 30	
in mind that O_i for the last two columns should also	Action	$\frac{(17 - 11.043)^2}{11.043} = 3.$	21	$\frac{(14 - 14.910)}{14.910}$	$\frac{2}{-}=0.06$	$\frac{(14-19)}{19.3}$	$\frac{(.325)^2}{25} = 1.47$	
be merged. $\sum_{E_l} \frac{ V - 2E_l}{ E_l }$ can be calculated straightaway for hypothesis testing, but the table is needed to	Comedy	$\frac{(8-8.344)^2}{8.344} = 0.0$	1	$\frac{(11 - 11.055)}{11.055}$	$\frac{2}{-}=0.00$	$\frac{(15-14)}{14.6}$	$\frac{(.601)^2}{01} = 0.01$	
study the sources of association.	Horror $\frac{(9-12.270)^2}{12.270} = 0.87$ $\frac{(22-16.258)^2}{16.258} = 2.03$ $\frac{(19-2)^2}{12.270} = 0.87$		$\frac{(19-21)}{21.4}$	$\frac{(.472)^2}{72} = 0.28$				
	Romance	$\frac{(6-8.344)^2}{8.344} = 0.6$	6	$\frac{(6-11.055)^2}{11.055}$	$\frac{2}{2}$ = 2.31	$\frac{(22 - 14)}{14.6}$	$\frac{(.601)^2}{01} = 3.75$	
	$\sum \frac{(O_i - E_i)^2}{E_i} = 3.21 + 0.01 + 0.87 + 0.66 + 0.06 + 0.00 + 2.03 + 2.31 + 1.47 + 0.01 + 0.28 + 3.75$ $= 14.66$							
Compare χ^2 with the critical value and state your conclusion.	$\chi^2 = 14.66 > 12.592$ \therefore Reject H_0 . There is sufficient evidence to suggest that age group and favourite movie genre are dependent.							
Look at the contingency table for $\frac{(O_l - E_l)^2}{E_l}$. Large values indicate sources of association. Refer back to	Action movies seemed to be more popular in the age group ≤ 20 , while romance movies are more popular in the age group > 30 .							
the expected and observed frequency of these cells.								

www.pmt.education **D PMTEducation**

0

AQA A Level Further Maths: Statistics

