

OCR A Further Maths AS-level

Mechanics

Formula Sheet

Provided in formula book

Not provided in formula book

▶ Image: Second Second

This work by <u>PMT Education</u> is licensed under <u>CC BY-NC-ND 4.0</u>

www.pmt.education

Work, Energy and Power

Work Done

Unit	1J = 1Nm
Work done by a force acting in the direction of motion	work done (J) = force (N) × distance(m) = Fd
Work done by or against gravity	work done (J) = weight (N) × height(m) = mgh

Energy

Kinetic Energy	$KE = \frac{1}{2}mv^2$
Work-Energy Principle	net work done = final KE – initial KE = $\frac{1}{2}mv^2 - \frac{1}{2}mu^2$
Gravitational Potential Energy	GPE = mgh
Principle of Conservation of Mechanical Energy	$GPE + KE = mgh + \frac{1}{2}mv^2 = constant$
$GPE_1 + KE_1 + work$ done by driving forces - work done against resistive forces = $GPE_2 + KE_2$	

Work Done by Force at an Angle

For force acting at an angle θ to the direction of movement

work done = force $\times \cos \theta \times \text{distance}$

0

▶ Image: PMTEducation

🕟 www.pmt.education

Power

Unit	$1W = 1Js^{-1}$
Average Power	Average power = $\frac{\text{work done}}{\text{time taken}} = \frac{Fd}{t}$
Power	Power = tractive force \times speed

🕟 www.pmt.education

 \odot

▶ Image: Second Second

Impulse and Momentum

Momentum	$momentum = mass \times velocity \\ = mv$
Impulse of a constant force	$I = \text{force } \times \text{time} = Ft$ $= \text{change in momentum} = mv - mu$

Collisions

Conservation of Momentum	If there are no external impulses: total momentum before collision = total momentum after collision $m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$
Newton's Experimental Law for Two Smooth Spheres	$\frac{\text{speed of separation}}{\text{speed of approach}} = -e$ $\frac{v_1 - v_2}{u_1 - u_2} = -e$ For $0 \le e \le 1$ where <i>e</i> is the coefficient of restitution
Newton's Experimental Law for a Smooth Sphere and a Fixed Plane Surface	v = -eu

🕟 www.pmt.education

0

0

▶ Image: Second Second

Motion in a Circle

Constant Acceleration

For a particle moving in a horizontal circular path of radius $r~{ m m}$ with constant angular speed $\dot{ heta}~{ m rad}~{ m s}^{-1}$	
Linear (Tangential) Speed	$egin{aligned} & arphi &= r \dot{ heta} \ & \dot{ heta} &= rac{d heta}{dt} \end{aligned}$
Radial Acceleration	$a = r\dot{\theta}^2 = v\dot{\theta} = \frac{v^2}{r}$ Towards the centre of circular motion

www.pmt.education DOO PMTEducation

0

•

