

OCR A Further Maths A-level

Mechanics

Formula Sheet

Provided in formula book

Not provided in formula book

This work by <u>PMT Education</u> is licensed under <u>CC BY-NC-ND 4.0</u>

Work, Energy and Power

Work Done

Unit	1J = 1Nm
Work done by a force acting in the direction of motion	work done (J) = force (N) × distance(m) = Fd
Work done by or against gravity	work done (J) = weight (N) × height(m) = mgh

Energy

Kinetic Energy	$KE = \frac{1}{2}mv^2$
Work-Energy Principle	net work done = final KE – initial KE = $\frac{1}{2}mv^2 - \frac{1}{2}mu^2$
Gravitational Potential Energy	GPE = mgh
Principle of Conservation of Mechanical Energy	$GPE + KE = mgh + \frac{1}{2}mv^2 = constant$
$GPE_1 + KE_1 + work$ done by driving forces	

- work done against resistive forces = $GPE_2 + KE_2$

Work Done by Force at an Angle

For force acting at an angle θ to the direction of movement

work done = force $\times \cos \theta \times \text{distance}$

O

▶ Image: Second Second

🕟 www.pmt.education

Work Done by a Variable Force

Work done by a variable force $f(x)$ dependent on displacement, x , in moving an object in a straight line from x_1 to x_2	
work done = $\int_{x_1}^{x_2} f(x) dx$	

Hooke's Law

Hooke's Law for Elastic String or Spring	$T = \frac{\lambda x}{l}$
Work done extending an elastic string or spring from extension x_1 to x_2	work done = $\frac{\lambda}{2l}(x_2^2 - x_1^2)$
Elastic Potential Energy	$EPE = \frac{\lambda x^2}{2l}$
Principle of Conservation of Energy	GPE + EPE + KE = constant

Power

Unit	$1W = 1Js^{-1}$
Average Power	Average power = $\frac{\text{work done}}{\text{time taken}} = \frac{Fd}{t}$
Power	Power = tractive force × speed

0

•

Vectors in Work Done, Kinetic Energy and Power

Work done	work done = scalar product of force and displacement vectors = $\mathbf{F} \cdot \mathbf{x} = (\mathbf{F} \cos \theta)(\text{displacement})$
Kinetic energy	$KE = \frac{1}{2}m(\mathbf{v} \cdot \mathbf{v})$ $\mathbf{v} \cdot \mathbf{v} = \text{scalar product of velocity with itself}$
Equation of motion with constant acceleration	$\mathbf{v} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{u} + 2\mathbf{a} \cdot \mathbf{s}$ Where v , u , a and s are in vector form
Power	power = scalar product of force and velocity vectors = $\mathbf{F} \cdot \mathbf{v}$

9

•

Impulse and Momentum

Momentum	$momentum = mass \times velocity \\ = mv$
Impulse of a constant force	$I = \text{force } \times \text{time} = Ft$ $= \text{change in momentum} = mv - mu$
Impulse of a variable force F acting for a time $t_1 \leq t \leq t_2$	$I = \int_{t_1}^{t_2} F dt$

Collisions

Conservation of Momentum	If there are no external impulses: total momentum before collision = total momentum after collision $m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$
Newton's Experimental Law for Two Smooth Spheres	$\frac{\text{speed of separation}}{\text{speed of approach}} = -e$ $\frac{v_1 - v_2}{u_1 - u_2} = -e$ For $0 \le e \le 1$ where <i>e</i> is the coefficient of restitution
Newton's Experimental Law for a Smooth Sphere and a Fixed Plane Surface	v = -eu

Vectors in Impulse and Momentum

Conservation of Momentum	$m_1\mathbf{u_1} + m_2\mathbf{u_2} = m_1\mathbf{v_1} + m_2\mathbf{v_2}$
Impulse	$\mathbf{I} = \mathbf{F}t = m\mathbf{v} - m\mathbf{u}$
	where I, F, v and u are vectors

0

•

Centre of Mass

Centre of Mass of a System of Point Masses

Centre of mass, \bar{x} , for n particles with masses $m_1, m_2 \dots m_n$ arranged in a straight line with positions $x_1, x_2 \dots x_n$

Centre of mass, $\begin{pmatrix} \bar{x} \\ \bar{y} \end{pmatrix}$, for n particles with masses $m_1, m_2 \dots m_n$ with position vectors $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \dots \begin{pmatrix} x_n \\ y_n \end{pmatrix}$

$$M\bar{x} = m_1 x_1 + m_2 x_2 + \dots + m_n x_n$$
$$M = m_1 + m_2 + \dots + m_n$$
$$M\left(\frac{\bar{x}}{\bar{y}}\right) = m_1 \binom{x_1}{y_1} + m_2 \binom{x_2}{y_2} + \dots + m_n \binom{x_n}{y_n}$$

 $M = m_1 + m_2 + \dots + m_n$

Centre of Mass of Standard Shapes

Triangular lamina	$\frac{2}{3}$ along the median from the vertex, or the point of intersection of the medians $\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}\right)$
Solid hemisphere with radius r	$\frac{3r}{8}$ from centre
Hemispherical shell with radius r	$\frac{r}{2}$ from centre
Circular arc with radius r and angle at centre 2α	$\frac{r \sin \alpha}{\alpha}$ from centre
Sector of circle with radius r and angle at centre 2α	$\frac{2r\sin\alpha}{3\alpha}$ from centre
Solid cone or pyramid with height <i>h</i>	$\frac{h}{4}$ from the base on the line between centre of base and vertex
Conical shell with height <i>h</i>	$\frac{h}{3}$ from the base on the line between centre of base and vertex

▶ Image: Second Second

www.pmt.education

Centre of Mass of a Composite Body

$$M\begin{pmatrix}\bar{x}\\\bar{y}\end{pmatrix} = m_1\begin{pmatrix}\bar{x}_1\\\bar{y}_1\end{pmatrix} + m_2\begin{pmatrix}\bar{x}_2\\\bar{y}_2\end{pmatrix} + \dots + m_n\begin{pmatrix}\bar{x}_n\\\bar{y}_n\end{pmatrix}$$
$$M = m_1 + m_2 + \dots + m_n$$

Centre of Mass by Integration

For a rod of length a metres with variable density function $f(x)$	$\bar{x} = \frac{\int_0^a xf(x)dx}{\int_0^a f(x)dx}$
For a uniform lamina defined by $f(x)$ and the lines of $x = a$, $x = 0$ and y = 0	$\bar{x} = \frac{\int_0^a xf(x)dx}{\int_0^a f(x)dx}$ $\bar{y} = \frac{\frac{1}{2}\int_0^a (f(x))^2 dx}{\int_0^a f(x)dx}$ $\text{Area} = \int_0^a f(x)dx$

Centre of Mass of a Uniform Solid of Revolution

For a uniform solid of revolution with radius
$$f(x)$$
:

$$\bar{x} = \frac{\int_{0}^{a} \pi x y^{2} dx}{\int_{0}^{a} \pi y^{2} dx}$$
Volume = $\int_{0}^{a} \pi y^{2} dx$

🕟 www.pmt.education

0

DOfS PMTEducation

Motion in a Circle

Constant Acceleration

For a particle moving in a horizontal circular path of radius $r~{ m m}$ with constant angular speed $\dot{ heta}~{ m rad~s^{-1}}$	
Linear (Tangential) Speed	$egin{aligned} & v = r \dot{ heta} \ & \dot{ heta} = rac{d heta}{dt} \end{aligned}$
Radial Acceleration	$a = r\dot{\theta}^2 = v\dot{\theta} = \frac{v^2}{r}$ Towards the centre of circular motion
Tangential Acceleration	$a = \frac{dv}{dt} = r\ddot{\theta}$ $\ddot{\theta} = \frac{d^2\theta}{dt^2}$

()

•

Further Dynamics and Kinematics

Linear Motion Under Variable Force

If velocity is given as a function of displacement	
Acceleration	$a = \frac{dv}{dt} = v\frac{dv}{dx}$
Time	$t=\int \frac{1}{\nu(x)}\ dx$

If acceleration is given as a function of displacement

$$\frac{1}{2}v^2 = \int a(x)\,dx$$

If acceleration is given as a function of velocity	
	$t = \int \frac{1}{a(v)} dv$
	$x = \int \frac{v}{a(v)} dv$

Variable Force

If force is given as a function of time

Using
$$F = ma$$
 and $a = \frac{dv}{dt}$: $v = \frac{1}{m} \int F(t) dt$

If force is given as a function of displacement

$$\frac{1}{2}mv^2 = \int F(x)\,dx$$

If force is given as a function of velocity

$$t = \int \frac{m}{F(v)} dv$$

$$x = \int \frac{mv}{F(v)} dv$$

0

▶ Image: Second Second

 (\mathbf{c})

S www.pmt.education