

Edexcel Further Maths AS-level Further Mechanics 2

Formula Sheet

Provided in formula book

Not provided in formula book

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Motion in a Circle

$$r = radius$$

$$v = linear speed$$

$$v = \dot{\theta} = angular speed$$

$$v = \dot{r}\dot{\theta}$$

Motion in a Horizontal Circle

Radial Acceleration = $-r\omega^2 = -\frac{v^2}{r}$ (towards the centre of the circle)

Centre of Mass of Plane Figures

Plane Figures

If a system consists of *n* particles with masses $m_1, m_2, ..., m_n$ are positioned at $(x_1, 0), (x_2, 0), ..., (x_n, 0)$ respectively, then

$$\sum_{i=1}^{n} m_i x_i = \bar{x} \sum_{i=1}^{n} m_i$$

where $(\bar{x}, 0)$ is the position of the centre of mass of the system.

If a system consists of *n* particles with masses $m_1, m_2, ..., m_n$ have position vectors $r_1, r_2, ..., r_n$ then

$$\sum_{i=1}^{n} m_i \boldsymbol{r}_i = \bar{\boldsymbol{r}} \sum_{i=1}^{n} m_i$$

where \bar{r} is the position vector of the centre of mass of the system.

For a rod with end positions (x_1, y_1) and (x_2, y_2) the centre of mass is the midpoint $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$.

For a uniform triangular lamina with coordinates $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) , the centre of mass has position $\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}\right)$.

Standard Results for Uniform Bodies

Triangular lamina	$\frac{2}{3}$ along median from vertex
Circular arc, radius r , angle at centre 2α	$\frac{r\sin\alpha}{\alpha}$ from the centre
Sector of circle, radius r , angle at centre 2α	$\frac{2r\sin\alpha}{3\alpha}$ from the centre
Semicircle, radius r	$\frac{4r}{3\pi}$ from the centre

Further Kinematics

Acceleration Varying with Time

 $a = f(t) = \frac{dv}{dt} = \frac{d^2x}{dt^2}$

Acceleration Varying with Displacement

$$a = f(x) = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$

Acceleration Varying with Velocity

$$a = f(v) = \frac{dv}{dt}$$

🕟 www.pmt.education

▶ Image: PMTEducation

