

Edexcel Further Maths A-level Further Mechanics 2

Formula Sheet

Provided in formula book

Not provided in formula book

This work by <u>PMT Education</u> is licensed under <u>CC BY-NC-ND 4.0</u>

Motion in a Circle

$$r = radius$$

$$v = linear speed$$

$$\mathcal{V} = \mathcal{T} \omega$$

$$\omega = \dot{\theta} = angular speed$$

Motion in a Horizontal Circle

Acceleration = $r\omega^2 = \frac{v^2}{r}$ (towards the centre of the circle)

Motion in a Vertical Circle

Transverse velocity	$v = r\dot{\theta}$
Transverse acceleration	$v = r\ddot{\theta}$
Radial acceleration	$-r\dot{\theta^2} = -\frac{v^2}{r}$

S www.pmt.education

0

▶ Image: Second Second

Centres of Mass

Plane Figures

If a system consists of *n* particles with masses $m_1, m_2, ..., m_n$ are positioned at $(x_1, 0), (x_2, 0), ..., (x_n, 0)$ respectively, then

$$\sum_{i=1}^n m_i x_i = \bar{x} \sum_{i=1}^n m_i$$

where $(\bar{x}, 0)$ is the position of the centre of mass of the system.

If a system consists of *n* particles with masses $m_1, m_2, ..., m_n$ have position vectors $r_1, r_2, ..., r_n$ then

$$\sum_{i=1}^{n} m_i \boldsymbol{r_i} = \bar{\boldsymbol{r}} \sum_{i=1}^{n} m_i$$

where \bar{r} is the position vector of the centre of mass of the system.

For a rod with end positions (x_1, y_1) and (x_2, y_2) the centre of mass is the midpoint $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$.

For a uniform triangular lamina with coordinates $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) , the centre of mass has position $\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}\right)$.

Standard Results for Uniform Bodies

DOG PMTEducation

Centre of Mass of Plane Figures Using Calculus

For a 2D model with equation $y = f(x)$:		
$\bar{x} = \frac{\int_{a}^{b} xy \mathrm{d}x}{\int_{a}^{b} y \mathrm{d}x}$	$\overline{y} = \frac{\int_a^b \frac{1}{2} y^2 \mathrm{d}x}{\int_a^b y \mathrm{d}x}$	
$M\bar{x} = \int_{a}^{b} \rho x y dx$	$M\bar{y} = \int_{a}^{b} \frac{1}{2}\rho y^{2} dx$	

where $M = \int_{a}^{b} \rho y \, dx$ is the total mass of the lamina, and ρ is the mass per unit area of the lamina.

Uniform Solid Bodies

For a uniform solid of revolution about the *x*-axis with mass *M* and density ρ , the centre of mass lies on the *x*-axis with position $\bar{x} = \frac{\int y^2 x dx}{\int y^2 dx}$ or $M\bar{x} = \int \rho \pi y^2 x dx$. For a uniform solid of revolution about the *y*-axis with mass *M* and density ρ , the centre of mass lies on the *y*-axis with position

$$\overline{y} = \frac{\int x^2 y dy}{\int x^2 dy}$$
 or $M\overline{y} = \int \rho \pi x^2 y dy$.

Standard Results for Uniform Bodies

Solid hemisphere, radius r	$\frac{3}{8}r$ from the centre
Hemispherical shell, radius r	$\frac{1}{2}r$ from the centre
Solid cone or pyramid of height <i>h</i>	$\frac{1}{4}h$ above the base on the line from the centre of base to vertex
Conical shell of height h	$\frac{1}{3}h$ above the base on the line from the centre of base to vertex

Non-Uniform Solid Bodies

For a non-uniform rod with density variable $\rho = f(x)$ and length l, the distance of the centre of mass from the end of the rod is $\int_{a}^{l} x \rho dx = \int_{a}^{l} x f(x) dx$

$$\bar{x} = \frac{\int_0^l x \rho \, dx}{\int_0^l \rho \, dx} = \frac{\int_0^l x f(x) \, dx}{\int_0^l f(x) \, dx}$$

www.pmt.education

Kinematics

Acceleration Varying with Time

$$a = f(t) = \frac{dv}{dt} = \frac{d^2x}{dt^2}$$

Acceleration Varying with Displacement

$$a = f(x) = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$

Acceleration Varying with Velocity

$$a = f(v) = \frac{dv}{dt}$$

Dynamics

Inverse Square Law

The force of attraction between two bodies of masses M_1 and M_2 is directly proportional to the product of their masses and inversely proportional to the square of the distance between them (*G* is the gravitational constant):

$$F = \frac{GM_1M_2}{d^2}$$

Simple Harmonic Motion

For a particle P moving in simple harmonic motion with amplitude *a*, defined by equation $\ddot{x} = -\omega^2 x$:

$$v^2 = \omega^2 (a^2 - x^2)$$

$$x = a \sin(\omega t + \alpha), a > 0$$

$$T = \frac{2\pi}{\omega}$$

▶
 O
 O

 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 <td

🕟 www.pmt.education

