Momentum and Impulse

Questions

Q1.

A particle P of mass 0.5 kg is moving with velocity $4\mathbf{j}$ m s⁻¹ when it receives an impulse \mathbf{l} Ns. Immediately after P receives the impulse, the velocity of P is $(2\mathbf{i} + 3\mathbf{j})$ m s⁻¹.

Find

(a) the magnitude of I,

(4)

(b) the angle between I and j.

(2)

(Total for question = 6 marks)

Q2.

Two particles, P and Q, have masses 2m and 3m respectively. They are moving towards each other in opposite directions on a smooth horizontal plane when they collide directly. Immediately before they collide the speed of P is 4u and the speed of Q is 3u. As a result of the collision, Q has its direction of motion reversed and is moving with speed u.

(a) Find the speed of *P* immediately after the collision.

(3)

(b) State whether or not the direction of motion of *P* has been reversed by the collision.

(1)

(c) Find the magnitude of the impulse exerted on *P* by *Q* in the collision.

(3)

(Total for question = 7 marks)

Q3.

A particle P, of mass 0.5 kg, is moving with velocity $(4\mathbf{i} + 4\mathbf{j})$ m s⁻¹ when it receives an impulse \mathbf{I} of magnitude 2.5 Ns.

As a result of the impulse, the direction of motion of P is deflected through an angle of 45°

Given that $I = (\lambda i + \mu j)$ Ns, find all the possible pairs of values of λ and μ .

(Total for question = 9 marks)

Q4.

A particle P of mass 0.5 kg is moving with velocity $(4\mathbf{i} + 3\mathbf{j})$ m s⁻¹ when it receives an impulse \mathbf{J} N s. Immediately after receiving the impulse, P is moving with velocity $(-\mathbf{i} + 6\mathbf{j})$ m s⁻¹.

(a) Find the magnitude of **J**.

(4)

The angle between the direction of the impulse and the direction of motion of P immediately before receiving the impulse is α°

(b) Find the value of α

(3)

(Total for question = 7 marks)

Q5.

A particle *P* has mass 0.5 kg. It is moving in the *xy* plane with velocity 8**i** m s⁻¹ when it receives an impulse $\lambda(-\mathbf{i} + \mathbf{j})$ N s, where λ is a positive constant.

The angle between the direction of motion of P immediately before receiving the impulse and the direction of motion of P immediately after receiving the impulse is θ°

Immediately after receiving the impulse, P is moving with speed $4\sqrt{10}\,\mathrm{m\,s^{-1}}$

Find (i) the value of λ

(ii) the value of θ

(8)

(Total for question = 8 marks)

Q6.

A particle A of mass 3m and a particle B of mass m are moving along the same straight line on a smooth horizontal surface. The particles are moving in opposite directions towards each other when they collide directly.

Immediately before the collision, the speed of *A* is *ku* and the speed of *B* is *u*. Immediately after the collision, the speed of *A* is *v* and the speed of *B* is 2*v*.

The magnitude of the impulse received by B in the collision is $\frac{3}{2}$ mu.

(a) Find v in terms of u only.

(3)

(b) Find the two possible values of k.

(5)

(Total for question = 8 marks)

Q7.

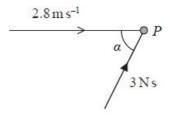


Figure 2

A particle P of mass 0.5 kg is moving in a straight line with speed 2.8 m s⁻¹ when it receives an impulse of magnitude 3 N s.

The angle between the direction of motion of P immediately before receiving the impulse and

the line of action of the impulse is α , where tan $\alpha = \frac{1}{3}$, as shown in Figure 2.

Find the speed of *P* immediately after receiving the impulse.

(Total for question = 5 marks)

Mark Scheme – Momentum and Impulse

Q1.

Q.	Scheme	Marks	Notes
a	I = 0.5(2i + 3j) - 0.5(4j)	M1	Impulse-momentum equation. Dimensionally correct. Condone subtraction in wrong order.
:	(=0.5(2i-j))	A1	Correct unsimplified
	$(=0.5(2\mathbf{i}-\mathbf{j}))$ $ \mathbf{I} = \frac{1}{2}\sqrt{2^2 + 1^2}$	M1	Correct method for modulus. Follow their I
	$=\frac{1}{2}\sqrt{5}(=1.12)$ Ns	A1	1.1 or better (from correct solution only)
		(4)	
b	$\tan^{-1}(\pm 2)$ or $\tan^{-1}(\pm \frac{1}{2})$ or $\tan \theta = \pm 2$ or $\tan \theta = \pm \frac{1}{2}$ or equivalent	M1	Correct method for a relevant angle. Follow their I
	Required angle = 117° (116.6° or better)	A1	Accept 243° (2.03 rads)
		(2)	9
balt	2i - j 2i - 3j		
	$\cos \alpha = \frac{16 + 5 - 13}{2\sqrt{5}\sqrt{16}} = \frac{1}{\sqrt{5}}$	M1	
	Required angle = 117° (116.6°)	A1	Accept 243°
		(2)	
		[6]	

Q2.

Question Number	Scheme	Marks
(a)	$ \begin{array}{cccc} 4u & & & & & & & & & & & & & & & & & & &$	M1 A1 A1 (3)
(b)	(Has been) reversed	B1 (1)
(c)	For $Q: I = 3m(u3u)$ = 12mu OR: For $P: I = 2m(2u4u)= 12mu$	M1 A1 A1 (3) OR M1 A1 A1 (3)
(a)	Notes M1 for CLM with correct no. of terms, all dimensionally correct, to give an equation in m , u and their V only. Condone consistent g 's or cancelled m 's. First A1 for a correct equation (they may have $+2mV$)	
(b)	Second A1 for 2u (must be positive since speed is required) B1 for '(has been) reversed'. Only available if a correct velocity has been correctly obtained in part (a). B0 for 'changed', 'direction has changed', 'yes'	
(c)	M1 for using Impulse = change in momentum of Q (must have $3m$ in both terms) (M0 if clearly adding momenta or if g is included) but condone sign errors. First A1 for $3m(u-3u)$ or $-3m(u-3u)$ Second A1 for $12mu$ (must be positive since magnitude required) OR M1 for using Impulse = change in momentum of P (must have $2m$ in both terms) (M0 if clearly adding momenta) but condone sign errors. First A1 for $2m(2u-4u)$ or $-2m(2u-4u)$ Second A1 for $12mu$ (must be positive since magnitude required) N.B. Allow use of $I = 3m(u-v)$ or $I = 2m(u-v)$ since only magnitude required	

Q3.

Question	Scheme	Mark s	AOs	Notes
	(2i+2j) I			
	Momentum of P after impulse = $a\mathbf{i}$ (or $a\mathbf{i}$)	B1	2.2a	Correct interpretation of angle of deflection (velocity or momentum a multiple of i or j)
Either	Use of $\mathbf{I} = m(\mathbf{v} - \mathbf{u})$: $(\mathbf{I} =) 0.5(2a\mathbf{i} - (4\mathbf{i} + 4\mathbf{j}))(=(a-2)\mathbf{i} -$	M1	3.3	Form vector triangle or equation for v or their <i>a</i> i
	Use of Pythagoras to form equation in <i>a</i>	M1	3.4	Use trigonometry or Pythagoras' theorem to form equation in a
	$6.25 = 0.25 ((2a-4)^2 + 16)$ $(4a^2 - 16a + 7 = 0)$	A1ft A1	1.1b 1.1b	Unsimplified equation with at most one error. Follow their <i>a</i> i Correct unsimplified equation
Or	$\lambda^2 + \mu^2 = \frac{25}{4}$	M1		
	$\mathbf{I} = \lambda \mathbf{i} + \mu \mathbf{j} = \frac{1}{2} ((x-4)\mathbf{i} - 4\mathbf{j})$	M1		
	$\mu = -2$	A1		Dependent on 2 nd M (for impulse)
	$\lambda^2 = \frac{9}{4}$	A1		

Or	Use of $\mathbf{I} = m(\mathbf{v} - \mathbf{u})$ to form vector triangle	M1	3.3	
	Form equation in their a	M1	3.4	
	$6.25 = a^2 + 8 - 2a\sqrt{8} \times \frac{1}{\sqrt{2}}$ $\left(4 \times 6.25 = b^2 + 32 - 2b\sqrt{32} \times \frac{1}{\sqrt{2}}\right)$ for velocity bi	A1ft A1	1.1b 1.1b	
	$(4a^2 - 16a + 7 = 0)$ $a = \frac{7}{2}, \frac{1}{2}$ $\Rightarrow \mathbf{I} = \frac{3}{2}\mathbf{i} - 2\mathbf{j} \text{ (Ns)}$	M1	1.1b	Complete correct method to solve to find a pair of values for λ and μ
	or $\mathbf{I} = -\frac{3}{2}\mathbf{i} - 2\mathbf{j} \text{ (Ns)}$	A1	1.1b	Two correct pairs of values for λ and μ
	or $I = -2i - \frac{3}{2}j \text{ (Ns)}$	M1	2.2a	Use symmetry in complete correct method to find one of the other pairs of values for λ and μ
	or $\mathbf{I} = -2\mathbf{i} + \frac{3}{2}\mathbf{j} \text{ (Ns)}$	A1	1.1b	All four correct pairs (They do not need to write out the impulse in full)
		(9)		

Q4.

Question	Scheme	Marks	AOs
а	Impulse-momentum equation	M1	3.1a
	$\mathbf{J} = 0.5(-\mathbf{i} + 6\mathbf{j} - 4\mathbf{i} - 3\mathbf{j})$ $(\mathbf{J} = 0.5(-5\mathbf{i} + 3\mathbf{j}))$	A1	1.1b
	Find magnitude of J:	M1	1.1b
	$ \mathbf{J} ^2 = \frac{1}{4}(25+9), \qquad \mathbf{J} = \frac{\sqrt{34}}{2} \text{ (N s)}$	A1	1.1b
		(4)	
b	a° $4i+3j$		
	Correct use of trig	M1	3.1a
	$\alpha^{\circ} = 180^{\circ} - \tan^{-1}\frac{3}{4} - \tan^{-1}\frac{3}{5}$ or $\alpha^{\circ} = \tan^{-1}\frac{4}{3} + \tan^{-1}\frac{5}{3}$	A1ft	1.1b
	$\alpha = 112$	A1	1.1b
		(3)	
balt	Use scalar product of μJ and $4i+3j$ to find the angle	M1	3.1a
	$\cos \alpha^{\circ} = \frac{-20 + 9}{\sqrt{34} \times 5}$	A1ft	1.1b
	$\alpha = 112$	A1	1.1b
		(3)	
balt	Use of cosine rule in triangle of momenta or equivalent	M1	3.1a
	$\alpha^{\circ} = 180^{\circ} - \cos^{-1} \left(\frac{34 + 25 - 37}{2 \times 5 \times \sqrt{34}} \right)$	Alft	1.1b
	$\alpha = 112$	A1	1.1b
		(3)	
		(7 n	narks)

Notes:	
(a)M1	Dimensionally correct. Must be subtracting, but condone subtracting in the wrong order.
Al	Correct unsimplified equation
Ml	Correct application of Pythagoras to find the magnitude. (from ±J)
Al	2.9 or better (2.9154) (from ±J)
(b)M1	Correct use of trig to find a relevant angle using $4\mathbf{i} + 3\mathbf{j}$ and their \mathbf{J} i.e. α° or $180^{\circ} - \alpha^{\circ}$ Allow $\frac{\mathbf{a.b}}{ \mathbf{a} \mathbf{b} }$
Alft	Correct unsimplified expression for the required angle. Follow their J A0 for $\begin{vmatrix} a.b \\ \hline a b \end{vmatrix}$ Do not ISW
Al	110 or better (112.166) or accept 247.8°

Q5.

Questio	on Scheme	Marks	AOs	
,	Use of Impulse = change in momentum	M1	3.1a	
	$0.5(\mathbf{v} - 8\mathbf{i}) = \lambda(-\mathbf{i} + \mathbf{j})$	A1	1.1b	
	$(\mathbf{v} = (-2\lambda + 8)\mathbf{i} + 2\lambda\mathbf{j})$		1.10	
	Use of Pythagoras:	M1	3.1a	
	e.g. $160 = (-2\lambda + 8)^2 + (2\lambda)^2$ $(160 = 4\lambda^2 - 32\lambda + 64 + 4\lambda^2)$	A1	1.1b	
	Form and solve quadratic in $\lambda: 8\lambda^2 - 32\lambda - 96 = 0$ $(\lambda^2 - 4\lambda - 12 = (\lambda - 6)(\lambda + 2) = 0)$	M1	2.1	
	$\Rightarrow \lambda = 6$	A1	1.1b	
	Find the required angle: 180°-tan ⁻¹ 3	M1	1.1b	
	$\theta = 108$	A1	2.2a	
		(8)		
		(8 n	narks)	
Notes:				
M1 N	fust be subtracting two values for momentum, but condone subtraction in	the wrong o	rder	
Al C	orrect unsimplified equation			
M1 C	forrect use of final speed with their v			
Al C	orrect unsimplified equation in one unknown or pair of simultaneous equ	ations		
M1 S	Simplify and solve for λ from correct working			
Al C	Correct positive solution only			
	Complete method to solve for θ			
M1 C	omplete method to solve for U			

Q6.

Question	Scheme	Marks	AOs
а	$ku \longrightarrow \longleftarrow u$ $\stackrel{A}{\underset{m}{\longrightarrow}} \qquad $		
	The maximum score is M1M1M1. Impulse received by B:	M1	3.4
	$\frac{3}{2}mu = m(2v - (-u))$	A1	1.1b
	$v = \frac{u}{4}$	A1	1.1b
		(3)	

b	Use of CLM or Impulse-momentum for one option for A :	M1	3.4
	$3kmu - mu = 2mv + 3mv \left(= \frac{5mu}{4} \right)$ or $3m(v - ku) = -\frac{3mu}{2} \left(3mu \left(\frac{1}{4} + \frac{1}{2} \right) = 3mku \right)$	Alft	1.11
	$k=\frac{3}{4}$	A1	1.11
	Form a second equation in k $\left(3mku - mu = 2mv - 3mv\left(= -\frac{mu}{4} \right) \text{ or } 3m(v + ku) = \frac{3mu}{2}\right)$	M1	3.1
	$k = \frac{1}{4}$	A1	1.11
		(5)	
		(T0tal 8 I	Mark

Notes	
(a)M1	Form impulse-momentum equation for B (or A). May be expressed as either $I = mv - mu$ or $I + mu = mv$. Dimensionally correct. Must be considering difference in velocities Must have a correct combination of mass and velocity: pairing velocity of one with the mass of the other scores $M0$ Allow for subtraction the wrong way round or impulse in the wrong direction. Assuming that you have not seen an incorrect formula stated, allow for $2v + u$ without overt evidence of subtraction. Allow if the common factor of m is not seen
A1	Correct unsimplified equation for B (or A). Allow without m
A1	Correct answer only
(b) M1	Correct method to form an equation in k . Must be dimensionally correct Condone sign errors in CLM. Allows marks for CLM equation here if seen in (a) and used correctly to find k here. Rules for impulse-momentum as above. M1 is available if they have not reversed the direction of the impulse. An equation which allows for the change in direction by using $\mathbf{u} - \mathbf{v}$ can score full marks. Could be working with either option for the direction of motion of A
A1ft	Correct unsimplified equation in u, v or their v
A1	One correct solution Be aware that a sign error in the impulse-momentum equation for A can lead to a fortuitous answer. A fortuitous answer scores A0 (FYI the incorrect answers are $\frac{-7}{4}$ and $\frac{1}{4}$)
M1	Correct method to form a second equation in k (reversing the direction of motion of A)
A1	Second correct solution

Q7.

Question	Scheme	Marks	AOs
	Impulse momentum equation(s)	M1	3.1a
		A1 A1	1.1b 1.1b
	$v = \frac{1}{5}\sqrt{32^2 + 24^2}$	M1	1.1b
	$= 8 \left(m s^{-1} \right)$	A1	1.1b
	Alternative working parallel and perpendicular to the impulse: $ \begin{pmatrix} 3 \\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} v_1 - 2.8 \times \cos \alpha \\ v_2 \pm 2.8 \times \sin \alpha \end{pmatrix} \qquad v_1 = 7.68, v_2 = \pm 2.24 $ $v = \sqrt{7.68^2 + 2.24^2} = 8 \text{ (m s}^{-1}) $		
		(5)	
alt	ν 6 π-α 2.8		
	Using cosine rule:	M1	
	$v^2 = 2.8^2 + 6^2 - 2 \times 2.8 \times 6\cos(\pi - \alpha)$	A1 A1	
	Solve for v	M1	
	$v = 8 \text{ (m s}^{-1})$	A1	
		(5)	
		(Total 5 n	narks)

Notes	
M1	Use of $I = mv - mu$ in two dimensions. (i.e. resolving used) Dimensionally correct. Allow for a combined equation in vector format or for just one component. Condone \sin/\cos confusion. Allow if m seen but not substituted.
A1 A1	Equation for one component correct unsimplified Equations for both components correct unsimplified Allow A1A1 for a correct unsimplified vector equation Allow A marks if in terms of m and α
M1	Correct use of Pythagoras for their components to obtain the numerical value of the speed. This may be seen or implied: an alert candidate might spot the 3, 4, 5 triangle.
A1	Correct only
Alt	
M1	Correct use of cosine rule in a dimensionally correct triangle. The lengths of the sides must be consistent, i.e. v, 2.8 and 6 or $\frac{1}{2}v$, 1.4 and 3 and it must be a correct vector triangle (vectors combined correctly)
A1	Unsimplified equation with at most one error
A1	Correct unsimplified equation
M1	Substitute for trig. and solve for v
A1	Correct only