

AQA Further Maths AS-level

Mechanics

Formula Sheet

Provided in formula book

Not provided in formula book

▶ Image: Second Second

This work by PMT Education is licensed under CC BY-NC-ND 4.0

www.pmt.education

Constant Acceleration

Motion in One Dimension

$$s = ut + \frac{1}{2}at^{2}$$
$$s = vt - \frac{1}{2}at^{2}$$
$$v = u + at$$
$$s = \frac{1}{2}(u + v)t$$
$$v^{2} = u^{2} + 2as$$

Motion in Multiple Dimensions

$$s = ut + \frac{1}{2}at^{2}$$
$$s = vt - \frac{1}{2}at^{2}$$
$$v = u + at$$
$$s = \frac{1}{2}(u + v)t$$

🕟 www.pmt.education

•

▶ Image: Second Second

Dimensional Analysis

Quantity	Dimension	SI Unit
Time	Т	second (s)
Mass	М	kilogram (kg)
Length/Displacement	L	metre (m)
Area/Volume	L^2/L^3	m^2/m^3
Velocity	LT^{-1}	ms ⁻¹
Acceleration	LT^{-2}	ms ⁻²
Force	MLT^{-2}	newton (N)
Kinetic Energy	ML^2T^{-2}	joule (J)
Work Done	ML^2T^{-2}	joule (J)
Moment	ML^2T^{-2}	newton metres (Nm)
Power	ML^2T^{-3}	watt (W)
Momentum	MLT^{-1}	kgms ⁻¹
Impulse	MLT^{-1}	newton seconds (Ns)
Moment of Inertia	ML^2	kgm ²
Angular Velocity	T^{-1}	rad s ⁻¹
Frequency	T^{-1}	hertz (Hz)
Periodic Time	Т	second (s)
Angle	1/Dimensionless	degree/radian
Density	ML^{-3}	kgm ⁻³
Pressure	$ML^{-1}T^{-2}$	pascal (Pa)

 \odot

▶ Image: Second Second

Momentum and Collisions

Conservation of Linear Momentum

Momentum of an object of mass m moving at velocity v	momentum = mv
Momentum of an object of mass m moving with velocity vector $inom{v_{\chi}}{v_{y}}$	momentum = $m \begin{pmatrix} v_x \\ v_y \end{pmatrix}$
Conservation of momentum: Total momentum before collision = total momentum after collision	$m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$
Impulse, <i>I</i> , of a constant force <i>F</i> acting for time <i>t</i>	I = Ft

Restitution and Newton's Experimental Law

Coefficient of restitution, e	$e = \frac{v_2 - v_1}{u_1 - u_2}, 0 \le e \le 1$
Coefficient of restitution for a perfectly elastic collision	<i>e</i> = 1
Velocity, v , after a collision with a fixed object at initial velocity u	v = -eu

Defining Impulse as a Change in Momentum

Impulse needed to change the velocity of mass m	$I = m_{ij}$ may
from u to v (a change in momentum)	I = mv - mu

Impulse for Variable Forces

▶ Image: Second Second

 \odot

S www.pmt.education

Work, Energy and Power

Definition of Work

Work done by a force acting in the direction of motion (unit: Joule, Newton Metre)	work done = force \cdot distance
Work done against/by gravity when raising/lowering a mass m through height h	work done $= mgh$

Gravitational Potential Energy

Kinetic Energy

Kinetic energy of an object of mass m moving at a speed v	kinetic energy $=\frac{1}{2}mv^2$
Work done by a force on an object is equal to the change in its kinetic energy from moving with an initial velocity u to a final velocity v	work done $=$ $\frac{1}{2}mv^2 - \frac{1}{2}mu^2$
Conservation of mechanical energy	$GPE + KE = mgh + \frac{1}{2}mv^2 = constant$

Hooke's Law and the Modulus of Elasticity

Modulus of elasticity, λ , given by the ratio of the product of tension T and length l to the extension x	$\lambda = \frac{Tl}{x}$
Stiffness of an elastic string of length l and modulus of elasticity λ	$k = \frac{\lambda}{l}$
Hooke's law for an elastic spring or string of length l , modulus of elasticity λ , stiffness k , and extension x	$T = kx = \frac{\lambda x}{l}$
Work done extending an elastic spring or string from length x_1 to length x_2	$\frac{k}{2}(x_2^2 - x_1^2) = \frac{\lambda}{2l}(x_2^2 - x_1^2)$

S www.pmt.education Doll PMTEducation

Work Done by a Variable Force

Work done by a variable force f(x) acting on an object, moving it from position x_1 to x_2 work done $= \int_{x_1}^{x_2} f(x) dx$

Elastic Potential Energy

Elastic potential energy (EPE) stored in a string extended, or compressed, by length <i>x</i>	$\frac{kx^2}{2} = \frac{\lambda x^2}{2l}$
Conservation of energy for an object acted on by only its own weight and the force in an elastic spring or string	GPE + EPE + KE = constant

Power

Average power of a constant force applied for a given time (Unit: Watts, W)	average power = $\frac{\text{work done}}{\text{time taken}}$
Power in terms of tractive force	Power = tractive force \cdot speed

S www.pmt.education

0

▶ Image: Second Second

Circular Motion

Angular Speed

Angular speed (rad s^{-1})	$\omega = \frac{\mathrm{d}\theta}{\mathrm{d}t}$
-------------------------------	---

Kinematic Quantities in Circular Motion

Linear speed, v , of a particle moving in a circular path of radius r and with constant angular speed ω	$v = r\omega$
Angular speed in terms of linear speed	$\omega = \frac{v}{r}$
Centripetal acceleration, a	$a = v\omega = r\omega^2 = \frac{v^2}{r}$

0)

•

▶ Image: Second Second

