
Work, Energy and Power II Cheat Sheet  AQA A Level Further Maths: Mechanics 

 

a)  Draw a diagram with forces labelled at 
equilibrium 

 

Use Hooke’s Law to set up equation at 
equilibrium and substitute values in 

𝜆𝑥

𝑙
− 𝑚𝑔 = 0 

⇒ λ =
𝑚𝑔𝑙

𝑥
=

2𝑔 × 0.7

0.7 − 0.5
=

343

5
= 68.6 N 

b) Use conservation of energy, i.e. 𝐸𝑃𝐸1 +
𝐺𝑃𝐸1 + 𝐾𝐸1 = 𝐸𝑃𝐸2 + 𝐺𝑃𝐸2 + 𝐾𝐸2 . 

Set GPE at start of upward movement to 0 so 𝐺𝑃𝐸1 =
0. Ball initially at rest so 𝐾𝐸1 = 0. 

So 𝐸𝑃𝐸1 = 𝐺𝑃𝐸2 + 𝐾𝐸2 + 𝐸𝑃𝐸2 (∗) 

Find the initial compression by adding the 
additional compression to the equilibrium 

compression 
Initial compression = (0.7 − 0.5) + 0.1 = 0.3  

Substitute into (∗) to relate the final 
compression of the spring 𝑥 to the speed of 

the ball 𝑣. 
Observe that the distance moved by the ball 

ℎ = initial compression −
final compression = 0.3 − 𝑥 

 

68.6

2 × 0.7
(0.3)2 = 2𝑔(0.3 − 𝑥) +

1

2
× 2𝑣2 +

68.6

2 × 0.7
𝑥2 

⇒ 𝑣2 = 4.41 − 0.6𝑔 + 2𝑔𝑥 − 49𝑥2 

Use 𝑔 = 9.8 ms−2 to simplify and then 
complete square of quadratic to find maximum 

𝑣. Notice that the maximum speed occurs 
when the compression is at the equilibrium 

compression. 

𝑣2 = −49(𝑥2 − 0.4𝑥) + 4.41 − 5.88 
⇒ 𝑣2 = −49(𝑥 − 0.4)2 + 0.49 

⇒ 𝑣max
2 = 0.49  

𝑣max = 0.7ms−1 

 

 

Hooke’s Law and the Modulus of Elasticity 

When elastic springs are compressed or stretched, they exert a restoring force to bring the length of the 

spring back to its natural length (the length of the spring when it is not acted on by any tension or 

compression forces). When the spring is extended, the restorative force will be tension. Conversely, 

when the spring is compressed, the restorative force is thrust. A similar restorative force acts in elastic 

strings, however elastic strings can only be extended and not compressed. While the displacement from 

the natural length is within the string or spring’s elastic limit, this restorative force can be described by 

Hooke’s Law which states: 

𝑇 = 𝑘𝑥. 

In words, the restorative force 𝑇 exerted by a spring is proportional to the extension 𝑥 acting in the 

opposite direction to the extension.  The constant 𝑘 is known as the spring constant or stiffness.  An 

alternative formulation of Hooke’s Law which uses a different constant of proportionality is  

𝑇 =
𝜆

𝑙
𝑥, 

where 𝑙 is the natural length of the spring or string and 𝜆 is the modulus of elasticity. The modulus of 

elasticity is the force required to double the length of an elastic spring or string, so a low value means 

the spring or string is quite flexible and easy to compress. A well-known example of an elastic modulus is 

the Young’s modulus, however this is not the only one. An assumption required for Hooke’s Law to hold 

is that the spring or string is light, this ensures the restorative force (tension or thrust) does not vary 

along the length of the spring or string. Hooke’s Law can be applied to solve many problems involving 

strings or springs. 

Example 3:  A light elastic spring with modulus of elasticity 80 N lies flat on a horizontal table fixed at 

one end, it is compressed horizontally with a force of 70 N. If the spring has a natural length of 2 m find 

the change in length. 

Elastic Potential Energy 

For a light elastic spring or string to be extended, work must be done; this work done is stored as elastic 

potential energy. After the spring or string is released, elastic potential energy is converted into kinetic 

energy as the spring or string contracts back to its natural length. This is analogous in the compression of 

a light elastic spring. This work done extending an elastic spring or string can be calculated using Hooke’s 

Law and the formula for work done by a variable force. The work done in extending a spring or string 

from extension 𝑥1 to extension 𝑥2 is given by: 

Work done = ∫  𝑇
𝑥2

𝑥1

𝑑𝑥 = ∫
𝜆𝑥

𝑙
 

𝑥2

𝑥1

𝑑𝑥, 

Integrating and substituting the limits in: 

Work done = [
𝜆𝑥2

2𝑙
]

𝑥1

𝑥2

=
𝜆

2𝑙
(𝑥2

2 − 𝑥1
2) 

Or equivalently: 

Work done =
𝑘

2
(𝑥2

2 − 𝑥1
2) 

This formula also holds for the compression of a light elastic spring, from compression 𝑥1to compression 

𝑥2 and can be derived using the same method. 

This formula for work done in extending or compressing a light elastic spring or string can be used to find 

a formula for the elastic potential energy (EPE) stored. This is done by setting 𝑥1 = 0, so extension or 

compression is from the natural length. Hence the following formulae are obtained: 

𝐸𝑃𝐸 =
𝑘𝑥2

2
=

𝜆𝑥2

2𝑙
 

This formula is often used when applying the principle of conservation of energy. When an object is 

acted on only by its weight and the force in a light elastic string or spring:  

𝐺𝑃𝐸 + 𝐸𝑃𝐸 + 𝐾𝐸 = constant 

where 𝐺𝑃𝐸 is gravitational potential energy, 𝐸𝑃𝐸 is elastic potential energy and 𝐾𝐸 is kinetic energy. 

Write Hooke’s Law 𝑇 =
𝜆𝑥

𝑙
 

Rearrange to make 𝑥 the subject and 
substitute values in to obtain 𝑥. 𝑥 =

𝑇𝑙

𝜆
=

70 × 2

80
= 1.75m 

 

Example 4:  Two strings hang in equilibrium with their top ends vertically suspended from a fixed point 

A, and their bottom ends attached to an object B, vertically below A as shown in the diagram. Object B 

has mass 2 kg. The blue string (string 1) has a natural length of 1 m and stiffness of 6 Nm−1, and the 

black string (string 2) has a natural length of 1.2 m and a stiffness of 10 Nm−1. If the distance between 𝐴 

and 𝐵 is 𝐷, find 𝐷. 

Example 5:  A ball with mass 2 kg is attached 

on top of a spring with natural length 0.7 m, 

resting on a horizontal table. Initially the 

system is at equilibrium with the ball 

0.5 m above the table, as in shown in the 

diagram. 

a) Calculate the modulus of elasticity 𝜆 of the 

spring. 

The spring is then compressed a further 0.1 m  

b) Using conversation of energy, find the 

maximum speed of the ball in its subsequent 

vertical motion. 

𝐴 

𝐵 

System at equilibrium so there is zero 
resultant force acting on 𝐵. Therefore, 
the sum of the tensions in the strings is 

equal to the weight of the object. 

𝑇1 + 𝑇2 − 2𝑔 = 0 

Use Hooke’s Law to find 𝑇1 and 𝑇2. 𝑇1 = 6(𝐷 − 1),  𝑇2 = 10(𝐷 − 1.2) 

Substitute 𝑇1 and 𝑇2into the 
equilibrium equation.  

6(𝐷 − 1) + 10(𝐷 − 1.2) = 2𝑔 

Rearrange to solve for 𝐷. 16𝐷 − 6 − 12 = 2𝑔 ⇒ D = 2.35 m 

 

0.5 m 

Work Done by a Variable Force 

In reality, there are forces for which their magnitude is not constant. However, integration can be used 

to find the work done by a force which the magnitude depends on the displacement, 𝑥 of the object it is 

acting on. Consider a variable force 𝑓(𝑥) acting parallel to the direction of motion.  If an object moves in 

a straight line from a position 𝑥1 to a position 𝑥2 under the action of this variable force 𝑓(𝑥), the work 

done can be calculated using the following formula: 

Work Done =  ∫ 𝑓(𝑥)
𝑥2

𝑥1

𝑑𝑥. 

Example 1: The work done by a force 𝑘𝑥3 in displacing an object from 𝑥 = 0 to 𝑥 = 4 is 192 J. Find the 

value of 𝑘. 

Example 2: A bus of mass 3000 kg begins stationary at point A at 𝑥 = 0. The bus then begins to move 

under a constant driving force of 3600 N. The bus also experiences a resistive force of  
𝑥2

16
 N. The bus 

moves along a smooth horizontal road and passes by point B, 200 m  away. Find the speed of the bus 

as it passes point B. 

 

Set up an equation for the work done using the 
formula above. 

∫  𝑘𝑥3
4

0

𝑑𝑥 = 192 

Integrate and substitute limits in to solve for 𝑘. 192 = [
𝑘𝑥4

4
]

0

4

= 64𝑘 ⇒ 𝑘 = 3Nm−3 

 

 

Calculate the work done by the driving force 
between points A and B. 

Work done by driving force = 3600 × 200 =
720,000 J 

Calculate the work done against resistance 
between points A and B. 

Work done against resistance = ∫
𝑥2

16

200

0
𝑑𝑥 =

[
𝑥3

48
]

0

200

=
500000

3
 J  

 

Use conservation of energy to set up an 
equation for increase in kinetic energy. Work 
done by driving force – work done against 

resistance = increase in kinetic energy. Then 
rearrange to solve for 𝑣. 

 

720,000 −
500000

3
=

1

2
× 3000 × 𝑣2 

⇒ 𝑣2 =
3320

9
 

⇒ |𝑣| = 19.2 ms−1 (3𝑠. 𝑓. ) 

 

𝑇 

𝑚𝑔 
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