

Edexcel Further Maths A-levelCore Pure

Formula Sheet

Provided in formula book

Not provided in formula book

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Complex Numbers

Euler's relation

$$e^{i\theta} = \cos\theta + i\sin\theta$$

Rectangular coordinate form

$$z = x + i y$$

 $z = re^{i\theta}$

Exponential form

$$r = |z| = \sqrt{x^2 + y^2}$$

$$\theta = \arg(z) = \tan^{-1} \frac{y}{x}$$

$$z = r(\cos\theta + i\sin\theta) = r(\cos(\theta + 2k\pi) + i\sin(\theta + 2k\pi))$$
, $k \in \mathbb{Z}$

De Moivre's Theorem

$${r(\cos\theta + i\sin\theta)}^n = r^n(\cos n\theta + i\sin n\theta)$$

nth Roots of Unity

The solutions of $z^n=1$ are given by $z=\cos\frac{2\pi k}{n}+i\sin\frac{2\pi k}{n}=e^{\frac{2\pi k}{n}i}$ for n=0,1,2,...,n-1.

Operations and Identities

For any two complex numbers $z_1 = r_1 e^{i\theta_1}$ and $z_2 = r_2 e^{i\theta_2}$:

$$z_1 \cdot z_2 = (r_1 \cdot r_2)e^{i(\theta_1 + \theta_2)}$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}$$

$$z + \frac{1}{z} = 2\cos\theta$$

$$z - \frac{1}{z} = 2i\sin\theta$$

$$z^n + \frac{1}{z^n} = 2\cos n\theta$$

$$z^n - \frac{1}{z^n} = 2i \sin n\theta$$

Matrices

Elementary Operations

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \pm \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} a \pm e & b \pm f \\ c \pm g & d \pm h \end{pmatrix}$$

$$k \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} ka & kb \\ kc & kd \end{pmatrix}$$

Matrix Multiplication

Matrices can be multiplied together if the number of columns in the first matrix is equal to the number of rows in the second matrix.

$$AB = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{pmatrix}$$

Determinant

For a 2 × 2 matrix $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$:

$$\det M = ad - bc$$

For a
$$3 \times 3$$
 matrix $M = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$

For a
$$3 \times 3$$
 matrix $M = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$: $\det(M) = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$

Singular matrix	$\det M = 0$
Non-singular matrix	$\det M \neq 0$

Inverse Matrices

$$M^{-1}M = MM^{-1} = I$$

If
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, then $M^{-1} = \frac{1}{\det M} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

For non-singular matrices *A* and *B*:

$$(AB)^{-1} = B^{-1}A^{-1}$$

Matrix Transformations

Anticlockwise rotation through θ about 0:

 $\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$

Reflection in the line $y = (\tan \theta)x$:

 $\cos 2\theta$ $\sin 2\theta$ $\sin 2\theta$ $-\cos 2\theta$

Summations and Series

$$\sum_{r=1}^{n} r = \frac{n(n+1)}{2}$$

$$\sum_{r=1}^{n} r^3 = \frac{1}{4} n^2 (n+1)^2$$

$$\sum_{r=1}^{n} r^2 = \frac{1}{6}n(n+1)(2n+1)$$

Maclaurin's and Taylor's Series

$$f(x) = f(0) + x f'(0) + \frac{x^2}{2!} f''(0) + \dots + \frac{x^r}{r!} f^{(r)}(0) + \dots$$

$$e^x = \exp(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^r}{r!} + \dots$$
 for all x

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{r+1} \frac{x^r}{r} + \dots \ (-1 < x \le 1)$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^r \frac{x^{2r+1}}{(2r+1)!} + \dots \text{ for all } x$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^r \frac{x^{2r}}{(2r)!} + \dots \text{ for all } x$$

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^r \frac{x^{2r+1}}{2r+1} + \dots (-1 \le x \le 1)$$

Calculus

Differentiation

f(x)	f'(x)
arcsin x	$\frac{1}{\sqrt{1-x^2}}$
arccos x	$-\frac{1}{\sqrt{1-x^2}}$
arctan x	$\frac{1}{1+x^2}$
$\sinh x$	cosh x
$\cosh x$	sinh x
tanh x	$\mathrm{sech}^2 x$
arsinh x	$\frac{1}{\sqrt{1+x^2}}$
arcosh <i>x</i>	$\frac{1}{\sqrt{x^2-1}}$
artanh <i>x</i>	$\frac{1}{1-x^2}$
coth <i>x</i>	$-\cosh ec^2x$
cosech <i>x</i>	$-\coth x \operatorname{cosech} x$
sech x	– tanh x sech x

Integration (+ constant, a > 0 where appropriate)

f(x)	$\int f(x) \ dx$
sinh x	$\cosh x$
$\cosh x$	$\sinh x$
tanh x	$\ln\cosh x$
$\frac{1}{\sqrt{a^2 - x^2}}$	$\arcsin\left(\frac{x}{a}\right) (x < a)$
$\frac{1}{a^2 + x^2}$	$\frac{1}{a} \arctan\left(\frac{x}{a}\right)$
$\frac{1}{\sqrt{x^2 - a^2}}$	$\operatorname{arcosh}\left(\frac{x}{a}\right), \ln\{x + \sqrt{x^2 - a^2}\} (x > a)$
$\frac{1}{\sqrt{a^2 + x^2}}$	$\operatorname{arsinh}\left(\frac{x}{a}\right), \ln\{x + \sqrt{x^2 + a^2}\}$
$\frac{1}{a^2-x^2}$	$\frac{1}{2a} \ln \left \frac{a+x}{a-x} \right = \frac{1}{a} \operatorname{artanh} \left(\frac{x}{a} \right) (x < a)$
$\frac{1}{x^2 - a^2}$	$\frac{1}{2a}\ln\left \frac{x-a}{x+a}\right $

Surface Area of Revolution

Cartesian coordinates	$s_x = 2\pi \int y \sqrt{\left(1 + \left(\frac{dy}{dx}\right)^2\right)} dx$
Parametric form	$s_x = 2\pi \int y \sqrt{\left(\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2\right)} dt$
Polar form	$s_x = 2\pi \int r \sin \theta \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} \ d\theta$

Arc Length

Cartesian coordinates	$s_x = \int \sqrt{\left(1 + \left(\frac{dy}{dx}\right)^2\right)} \ dx$
Parametric form	$s_x = \int \sqrt{\left(\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2\right)} dt$
Polar form	$s_{x} = \int \sqrt{r^{2} + \left(\frac{dr}{d\theta}\right)^{2}} \ d\theta$

Vectors

Vector product
$$\mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \sin \theta \, \hat{\mathbf{n}}$$

$$\mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \sin \theta \, \hat{\mathbf{n}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{pmatrix}$$

Scalar product

$$\mathbf{a}.\,\mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos\theta = a_1b_1 + a_2b_2 + a_3b_3$$

$$a.(b \times c) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = b.(c \times a) = c.(a \times b)$$

Cartesian and Vector Equations

If A is the point with position vector $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ and the direction vector \mathbf{b} is given by $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$, then the straight line through A with direction vector \mathbf{b} has cartesian equation

$$\frac{x - a_1}{b_1} = \frac{y - a_2}{b_2} = \frac{z - a_3}{b_3} (= \lambda)$$

The plane through A with normal vector $\mathbf{n} = n_1 \mathbf{i} + n_2 \mathbf{j} + n_3 \mathbf{k}$ has cartesian equation $n_1 x + n_2 y + n_3 z + d = 0$ where d = -a. n

The plane through non-collinear points A, B and C has vector equation $r = a + \lambda(b - a) + \mu(c - a) = (1 - \lambda - \mu)a + \lambda b + \mu c$

The plane through the point with position vector \boldsymbol{a} and parallel to \boldsymbol{b} and \boldsymbol{c} has equation r = a + sb + tc

The plane through non-collinear points A, B and C has vector equation $r = a + \lambda(b - a) + \mu(c - a) = (1 - \lambda - \mu)a + \lambda b + \mu c$

Calculating Distances

The perpendicular distance of
$$(\alpha, \beta, \gamma)$$

from $n_1x + n_2y + n_3z + d = 0$

$$\frac{|n_{1}\alpha+n_{2}\beta+n_{3}\gamma+d|}{\sqrt{n_{1}^{2}+n_{2}^{2}+n_{3}^{2}}}$$

The shortest distance between the two skew lines with equations $r = a + \lambda b$ and $r = c + \mu d$ where λ and μ are scalars

$$\left|\frac{(a-c).(b\times d)}{|(b\times d)|}\right|$$

Calculating Areas

Area of a triangle ABC where A, B and C have position vectors a, b and c

$$\frac{1}{2}|(\boldsymbol{a}\times\boldsymbol{b})+(\boldsymbol{b}\times\boldsymbol{c})+(\boldsymbol{c}\times\boldsymbol{a})|$$

Area of a parallelogram spanned by a and b

$$|a \times b|$$

Angle Between a Line and Plane

The angle θ between the line with equation $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ and the plane with the equation $\mathbf{r} \cdot \mathbf{n} = p$ is given by:

$$\sin\theta = \left| \frac{b \cdot n}{|b||n|} \right|$$

Angle Between Two Planes

The angle θ between the plane with the equation $\mathbf{r} \cdot \mathbf{n_1} = p_1$ and the plane with the equation $\mathbf{r} \cdot \mathbf{n_2} = p_2$ is given by:

$$\cos\theta = \left| \frac{n_1 \cdot n_2}{|n_1| |n_2|} \right|$$

Polar Coordinates

For a point with polar coordinates (r, θ) and cartesian coordinates (x, y):

$$r\cos\theta = x$$
$$r\sin\theta = y$$

$$r^{2} = x^{2} + y^{2}$$
$$\theta = \arctan\left(\frac{y}{x}\right)$$

r = a is a circle with centre θ and radius a

heta=lpha is a half-line through O and making an angle lpha with the initial line r=a heta is a spiral starting at O

Area of a Sector

The area of a sector bounded by a polar curve and the half lines $\theta = \alpha$ and $\theta = \beta$, where θ is in radians:

$$\frac{1}{2}\int_{\alpha}^{\beta}r^{2}\ d\theta$$

Hyperbolic Fuctions

Definitions

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^{2x} - 1}{e^{2x} + 1}$$

$$\operatorname{cosech} x = \frac{2}{e^x - e^{-x}}$$

$$\operatorname{sech} x = \frac{2}{e^x + e^{-x}}$$

$$\coth x = \frac{e^{2x} + 1}{e^{2x} - 1}$$

Identities

$$\cosh^2 x - \sinh^2 x = 1$$

$$\sinh 2x = 2 \sinh x \cosh x$$

$$\cosh 2x = \cosh^2 x + \sinh^2 x$$

$$sinh(A \pm B) = sinh A cosh B \pm cosh A sinh B$$

$$\cosh(A \pm B) = \cosh A \cosh B \pm \sinh A \sinh B$$

$$\operatorname{sech}^2 x = 1 - \tanh^2 x$$

$$\operatorname{cosech}^2 x = \coth^2 x - 1$$

Inverse Functions

$$\operatorname{arcosh} x = \ln\{x + \sqrt{x^2 - 1}\} \quad (x \ge 1)$$

$$\operatorname{arsinh} x = \ln\{x + \sqrt{x^2 + 1}\}\$$

$$\operatorname{artanh} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) \quad (|x| < 1)$$

Differential Equations

First Order Differential Equations

Integrating factor $e^{\int P(x)dx}$

General Solution to Second-Order Differential Equations

The nature of the roots α and β of the auxiliary equation determine the general solution to the second-order differential equation $a\frac{d^2y}{dx^2} + \frac{bdy}{dx} + c = 0$:		
Case 1: $b^2 > 4ac$	The general solution will be in the form $y = Ae^{\alpha x} + Be^{\beta x}$ where α and β are two real roots of the auxiliary equation.	
Case 2: $b^2 = 4ac$	The general solution will be in the form $y = (A + BX)e^{\alpha x}$ where α is a repeated root of the auxiliary equation.	
Case 3: $b^2 < 4ac$	The general solution will be in the form $y = e^{px}(A\cos qx + B\sin qx)$ where the auxiliary equation has two complex conjugate roots $\alpha, \beta = p \pm qi$.	

Particular Integral

$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x)$		
Form of $f(x)$	Form of particular integral	
p	λ	
p + qx	$\lambda + \mu x$	
$p + qx + rx^2$	$\lambda + \mu x + \nu x^2$	
pe ^{kx}	λe ^{kx}	
$p\cos\omega x + q\sin\omega x$	$\lambda \cos \omega x + \mu \sin \omega x$	

