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Proof by Induction 

Proof by induction is a robust and diverse method of mathematical proof used when the result or final 

expression is already known. In AQA A-Level Further Mathematics, it is involved only in proving sums of 

series, divisibility, and powers of matrices. 

The four-stage process is always as follows: 

1. Base case: Prove the result is true for 𝑛 = 1 (or 0). 

2. Assumption: Assume the result is true for 𝑛 = 𝑘. 

3. Inductive step: Prove the result is true for 𝑛 = 𝑘 + 1. 

4. Conclusion: Write a strict concluding statement that the result holds for all positive integers. 

This method of proof is often likened to a row of toppling dominos. By proving the result is true for 𝑛 = 1 

and 𝑛 = 𝑘 + 1, it can be deduced that the result must hold for 𝑛 = 2. As it holds for 𝑛 = 2, it must also hold 

for 𝑛 = 3, 𝑛 = 4, … . Hence, the statement holds for all integers 𝑛 ≥ 1. 

Sums of Series 

Proof by induction is often useful in proving results about sums of series, typically with sigma notation. This 

includes the standard summation results introduced in the Further Algebra and Functions section of the 

course, which are also given in the data booklet. An example of proof by induction for one of the standard 

results is shown below. 

Example 1: Prove ∑ 𝑟2n
𝑟=1 =

𝑛

6
(𝑛 + 1)(2𝑛 + 1) for all positive integer values of 𝑛. 

 

 

 

 

 

 

Example 2: Prove by induction that for all 𝑛 ∈ ℤ+, 
1

1×3
+

1

3×5
+

1

5×7
+. . . +

1

(2𝑛−1)(2𝑛+1)
=

𝑛

2𝑛+1
. 

Divisibility 

Proving that an expression is divisible by an integer is an area of number theory known as divisibility. There 

are several methods of proving divisibility by induction; two will be explored in this section. Note that there 

is no target expression in this type of proof by induction, rather, we try to manipulate the expression for 

𝑢𝑘+1 to show the divisibility property. 

Example 3: Prove 6𝑛 + 4 is divisible by 5 for all integers 𝑛 ≥ 0. 

 

 

 

Divisibility problems can be extended by introducing multiple indices. In these cases, it may be easier to 

prove the statement is true for 𝑛 = 𝑘 + 1 by subtracting (or adding) multiples of terms from each other. 

Given one term that is divisible by some integer 𝑝, if the difference between this term and another is also 

divisible by 𝑝, both terms must be divisible by 𝑝. An example of this is shown below. 

Example 4: Prove 13𝑛+1 − 7𝑛 is divisible by 6 for all integers 𝑛 ≥ 0. 

Powers of Matrices 

From the Matrices section of the course, it will have been shown that 𝑴𝑘𝑴 = 𝑴𝑘+1. This fact means       

that matrix multiplication can be used to prove results involving powers of matrices by induction. 

Example 5: 𝑴 = (
2 2
0 1

). Prove by induction that 𝑴𝑛 = (2n 2𝑛+1 − 2
0 1

) for 𝑛 ≥ 1 ∈ ℤ. 

 

It is useful to first work out the ‘target 
expression’ for 𝑛 = 𝑘 + 1, which will be 
derived later in the inductive step. 

Target expression: 

∑ r2

k+1

r=1

=
k + 1

6
((k + 1) + 1)(2(k + 1) + 1) 

∑ r2

k+1

r=1

=
k + 1

6
(k + 2)(2k + 3) 

 

Calculate the RHS and LHS separately to show 
that the result is true for 𝑛 = 1. 

LHS: (1)2 = 1 

RHS:
1

6
(1 + 1)(2 × 1 + 1) = 1 

RHS = LHS ∴ Result is true for 𝑛 = 1. 

State the assumption that the result is true 
for 𝑛 = 𝑘 by substituting 𝑘 for 𝑛 in the whole 
expression. 

Assume true for 𝑛 = 𝑘: 

∴ ∑ r2

k

r=1

=
k

6
(k + 1)(2k + 1) 

Using the result for 𝑛 = 𝑘, calculate the result 
for 𝑛 = 𝑘 + 1. This is done by adding on the 
(𝑘 + 1)𝑡ℎ term. Note that it is generally easier 
to factorise out terms to simplify, rather than 
expanding every bracket. Keep in mind we are 
trying to reach the target expression 
calculated in the first line of working. 

∑ r2

k+1

r=1

= ∑ r2

k

r=1

+ (k + 1)2 

∑ r2

k+1

r=1

=
k

6
(k + 1)(2k + 1) + (k + 1)2 

∑ r2

k+1

r=1

=
k + 1

6
[k(2k + 1) + 6(k + 1)] 

∑ r2

k+1

r=1

=
k + 1

6
[2k2 + 7k + 1] 

∑ r2

k+1

r=1

=
k + 1

6
(𝑘 + 2)(2𝑘 + 3) 

∴ Result is true for 𝑛 = 𝑘 + 1. 

Write the conclusion. The bolded words must 
be included to emphasise the inductive step. 

If the statement is true for 𝑛 = 𝑘, then it is 
true for 𝑛 = 𝑘 + 1. Since the statement is 
true for 𝑛 = 1, it is true for all 𝑛 ∈ ℤ+. 
 

 

Show the result is true for the base case by 
letting 𝑛 = 0. Then factorise 5 out the 
expression. 

60 + 4 = 1 + 4 = 5 = 5 × 1 
∴ Result is true for 𝑛 = 0. 

State the assumption that the result is true 
for 𝑛 = 𝑘; this means assuming 6𝑛 + 4 is a 
multiple of 5 for all 𝑘 ≥ 0. Note 𝑢𝑘 denotes 
the 𝑘𝑡ℎ term. 

Assume true for 𝑛 = 𝑘: 
𝑢𝑘 = 6𝑘 + 4 = 5𝑚 

Write the result for 𝑛 = 𝑘 + 1 (denoted by 
𝑢𝑘+1). By rearranging 𝑢𝑘, rewrite 𝑢𝑘+1 to 
show that 𝑢𝑘+1 is also divisible by 5. 

𝑢𝑘+1 = 6𝑘+1 + 4 
6(6𝑘) + 4 

6𝑘 + 4 = 5𝑚 ⟹ 6𝑘 = 5𝑚 − 4 
∴ 6(6𝑘) + 4 = 6(5𝑚 − 4) + 4 

= 30𝑚 − 20 
= 5(6𝑚 − 4) 

∴ Result is true for 𝑛 = 𝑘 + 1. 

Write the conclusion. If the statement is true for 𝑛 = 𝑘, then it is 
true for 𝑛 = 𝑘 + 1. Since the statement is 
true for 𝑛 = 0, it is true for all 𝑛 ≥ 0 ∈ ℤ. 

 

Show that the result is true for 𝑛 = 0 by 
letting 𝑛 = 0. Then factor 6 out the 
expression. 

130+1 − 70 = 13 − 1 = 12 = 6 × 2 
∴ Result is true for 𝑛 = 1. 

State the assumption that the result is true 
for 𝑛 = 𝑘, i.e., assume 13𝑛+1 − 7𝑛 is a 
multiple of 6 for all 𝑘 ≥ 0. 

Assume true for 𝑛 = 𝑘: 
𝑢𝑘 = 13𝑘+1 − 7𝑘 = 6𝑚 

Write the result for 𝑢𝑘+1. Subtract a 
multiple of 𝑢𝑘 to eliminate one of the terms. 
Here, it can be seen that 7𝑘+1 can be 
eliminated by subtracting 7𝑢𝑘. 
 
 

𝑢𝑘+1 = 13(𝑘+1)+1 − 7𝑘+1 = 13𝑘+2 − 7𝑘+1 
𝑢𝑘+1 − 7𝑢𝑘 = 13𝑘+2 − 7𝑘+1 − 7(13𝑘+1 − 7𝑘) 

= 13𝑘+2 − 7𝑘+1 − 7(13𝑘+1) + 7𝑘+1 
= 13𝑘+2 − 7(13𝑘+1) 

= 13(13𝑘+1) − 7(13𝑘+1) 
= 6 × 13𝑘+1 

∴ Result is true for 𝑛 = 𝑘 + 1. 

Write the conclusion. If the statement is true for 𝑛 = 𝑘, then it is true 
for 𝑛 = 𝑘 + 1. Since the statement is true for 
𝑛 = 0, it is true for all 𝑛 ≥ 0 ∈ ℤ. 

 

Calculate the target expression for 
𝑛 = 𝑘 + 1 to be derived later in the 
inductive step. 

Target expression: 

𝑴𝑘+1 = (2𝑘+1 2(𝑘+1)+1 − 2
0 1

) = (2𝑘+1 2𝑘+2 − 2
0 1

) 

Show that the result is true for 𝑛 = 1 
by substituting 1 for 𝑛 in the general 
expression. 

𝑴1 = (21 21+1 − 2
0 1

) = (
2 2
0 1

) 

∴ Result is true for 𝑛 = 1. 

State the assumption that the result 
is true for 𝑛 = 𝑘 by replacing 𝑛 with 𝑘 
in the general expression. 
 
 

Assume true for 𝑛 = 𝑘: 

𝑴𝑘 = (2𝑘 2𝑘+1 − 2
0 1

) 

Prove the result is true for 𝑛 = 𝑘 +
1 by multiplying the result for 𝑴𝑘 
with 𝑴. 

𝑴𝑘 × 𝑴 = (2𝑘 2𝑘+1 − 2
0 1

) (
2 2
0 1

) 

= (2𝑘+1 2𝑘+1 + 2𝑘+1 − 2
0 1

) 

= (2𝑘+1 2(2𝑘+1) − 2
0 1

) 

= (2𝑘+1 2𝑘+2 − 2
0 1

), which is the target expression. 

∴ Result is true for 𝑛 = 𝑘 + 1. 

Write the conclusion. If the statement is true for 𝑛 = 𝑘, then it is true for 
𝑛 = 𝑘 + 1. Since the statement is true for 𝑛 = 1, it is 
true for all 𝑛 ∈ ℤ+. 

 

Calculate the target 
expression to be derived in 
the inductive step. This is 
found by substituting    
𝑘 + 1 into the RHS of the 
result. 

Target expression: 
𝑘 + 1

2(𝑘 + 1) + 1
=

𝑘 + 1

2𝑘 + 3
 

Compare the RHS and LHS 
separately to show that 
the result is true for 𝑛 = 1. 

LHS: 
1

1 × 3
=

1

3
 

RHS:
1

(2 × 1) + 1
=

1

3
 

RHS = LHS ∴ Result is true for 𝑛 = 1. 
State the assumption that 
the result is true for 𝑛 = 𝑘 
by substituting 𝑘 for 𝑛 in 
the whole expression. 
Note 𝑆𝑘 denotes the sum 
of the first 𝑘 terms. 

Assume true for 𝑛 = 𝑘: 

𝑆𝑘 =
1

1 × 3
+

1

3 × 5
+

1

5 × 7
+ ⋯ +

1

(2𝑘 − 1)(2𝑘 + 1)
=

𝑘

2𝑘 + 1
 

Using the result for 𝑆𝑘, 
calculate the result for 
𝑆𝑘+1 (the sum of the first 
𝑘 + 1 terms). This is done 
by adding on the (𝑘 + 1)𝑡ℎ 
term. Keep in mind we are 
trying to reach the target 
expression. 

𝑆𝑘+1 = 𝑆𝑘 + 𝑢𝑘+1 

𝑆𝑘+1 =
𝑘

2𝑘 + 1
+

1

(2(𝑘 + 1) − 1)(2(𝑘 + 1) + 1)
 

𝑆𝑘+1 =
𝑘

2𝑘 + 1
+

1

(2𝑘 + 1)(2𝑘 + 3)
 

=
𝑘(2𝑘 + 3) + 1

(2𝑘 + 1)(2𝑘 + 3)
 

=
2𝑘2 + 3𝑘 + 1

(2𝑘 + 1)(2𝑘 + 3)
 

=
(2𝑘 + 1)(𝑘 + 1)

(2𝑘 + 1)(2𝑘 + 3)
 

=
𝑘+1

2𝑘+3
, which is the target expression. 

∴ Result is true for 𝑛 = 𝑘 + 1. 

Write the conclusion. If the statement is true for 𝑛 = 𝑘, then it is true for 𝑛 = 𝑘 + 1. 
Since the statement is true for 𝑛 = 1, it is true for all 𝑛 ∈ ℤ+. 

 

 

 

 

 

 

This denotes all 𝑛 belonging to the set of positive integers. 
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