Proof Cheat Sheet

Proof by Induction

Proof by induction is a robust and diverse method of mathematical proof used when the result or final expression is already known. In AQA A-Level Further Mathematics, it is involved only in proving sums of series, divisibility, and powers of matrices.
The four-stage process is always as follows:

1. Base case: Prove the result is true for $n=1$ (or 0).
2. Assumption: Assume the result is true for $n=k$.
3. Inductive step: Prove the result is true for $n=k+$.
4. Conclusion: Write a strict concluding statement that the result holds for all positive integers.

This method of proof is often likened to a row of toppling dominos. By proving the result is true for $n=1$ This $m=k+1$, it can be deduced that the result must hold for $n=2$. As it holds for $n=2$, it must also hold for $n=3, n=4, \ldots$. Hence, the statement holds for all integers $n \geq 1$.

Sums of Series

Proof by induction is often useful in proving results about sums of series, typically with sigma notation. This Proof by induction is often useful in proving results about sums of series, typically with sigma notation. This
includes the standard summation results introduced in the Further Algebra and Functions section of the course, which are also given in the data booklet. An example of proof by induction for one of the standard results is shown below.
Example 1: Prove $\sum_{r=1}^{n} r^{2}=\frac{n}{6}(n+1)(2 n+1)$ for all positive integer values of n.

RHS $=$ LHS $:$: Result is true for $n=1$. Assume true for $n=k$:

$$
\begin{aligned}
& \therefore \sum_{r=1}^{k} r^{2}=\frac{k}{6}(k+1)(2 k+1) \\
& \sum_{r=1}^{k+1} r^{2}=\sum_{r=1}^{k} r^{2}+(k+1)^{2}
\end{aligned}
$$

$$
\sum_{\substack{\mathrm{r}=1 \\ k+1}}^{r^{2}=\frac{k}{6}(k+1)(2 k+1)+(k+1)^{2}}
$$

$$
\sum_{\mathrm{r}=1}^{\substack{\mathrm{k}+1 \\ \mathrm{k}+1}} \mathrm{r}^{2}=\frac{\mathrm{k}+1}{6}[\mathrm{k}(2 \mathrm{k}+1)+6(\mathrm{k}+1)]
$$

$$
\sum_{r=1}^{k+1} r^{2}=\frac{k+1}{6}\left[2 k^{2}+7 k+1\right.
$$

$$
\sum_{\substack{r=1 \\ \text { esult is true for } n=k+1 \\ k+1}}^{\substack{r \\ k+1}} \frac{k+1}{6}(k+2)(2 k+3)
$$

$$
\text { Result is true for } n=k+1
$$

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
\text { Target expression: } \\
\sum_{r=1}^{k+1} r^{2}=\frac{k+1}{6}((k+1)+1)(2(k+1)+1) \\
\sum_{r=1}^{k+1} r^{2}=\frac{k+1}{6}(k+2)(2 k+3)
\end{array}
\end{array} \\
& \sum_{\mathrm{r}=1}^{\mathrm{r}^{2}=\frac{\mathrm{k}}{6}(\mathrm{k}+2)(2 \mathrm{k}+3)} \begin{array}{c}
\text { LHS: }(1)^{2}=1
\end{array} \\
& \text { RHS: } \frac{1}{6}(1+1)(2 \times 1+1)=1
\end{aligned}
$$

$n=k+1$ to be derived later in the
inductive step. Show that the by substituting 1 for n in the general expression.
State the assumption that the result
is true for $n=k$ by
Prove the result is true for $n=k$

```
Prove the result is true for n=k+
Prove the result is true for n=k+
1 by mul
with \(M\).

\[
\boldsymbol{M}^{k}=\left(\begin{array}{cc}
2^{k} & 2^{k+1}-2 \\
0 & 1
\end{array}\right)
\]
Res
\[
\begin{aligned}
& \text { If the statement is true for } n=k \text {, then it is true for } \\
& n=k+1 \text {. Since the statement is true for } n=1 \text {, it is }
\end{aligned}
\]
\[
\begin{aligned}
& n=k+1 \text { Since the statement is true for } n=1 \text {, it is } \\
& \text { true for all } n \in \mathbb{Z}^{+} \text {. }
\end{aligned}
\]

\section*{in the general expression.}
1 by \(m\) u.
with \(M\).
\(\square\)

This denotes all \(n\) belonging to the set of positive integers.

Example 2: Prove by induction that for all \(n \in \mathbb{Z}^{+}, \frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}\)
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Calculate the target \\
expression to be derived in \\
the inductive step. This is \\
found by substituting \\
\(k+1\) into the RHS of the
\end{tabular} & \begin{tabular}{c} 
Target expression: \\
result.
\end{tabular} & \(\frac{k+1}{2(k+1)+1}=\frac{k+1}{2 k+3}\)
\end{tabular}

\section*{Divisibility}

Proving that an expression is divisible by an integer is an area of number theory known as divisibility. There are several methods of proving divisibility by induction; two will be explored in this section. Note that there is no target expression in this type of proof by induction, rather, we try to manipulate the expression for
\(u_{k+1}\) to show the divisibility property.
Example 3 : Prove \(6^{n}+4\) is divisible by 5 for all integers \(n \geq 0\).
\begin{tabular}{|l|l}
\begin{tabular}{l} 
Show the result is true for the base case by \\
letting \(n=0\). Then factorise 5 out the \\
experssion.
\end{tabular} & \(\therefore\) Result is true for \(n=0\).
\end{tabular}
expression to be derived in
the inductive sten. This is found by subtivep. This is \(k+1\) into the RHS of the Compare the RHS and LHS semparately to show that
the result is true for \(n=1\).

State the assumption that
he result is true for \(n=k\) by substituting \(k\) for \(n\) in \(S_{k}\) denotes the sum Using the result for \(S\) \(S_{k+1}\) the sum of the first \(k+1\) terms). This is done adding on the \((k+1)^{2 n}\) m. keep in mind we ar trying to reach the target expression.

Write the conclusion. ince the statement is true for \(n=1\), it is true for all \(n \in \mathbb{Z}^{+}\).
\begin{tabular}{|c|c|}
\hline Show that the result is true for \(n=0\) by letting \(n=0\). Then factor 6 out the expression. & \[
\begin{aligned}
& \quad 13^{0+1}-7^{0}=13-1=12=6 \times 2 \\
& \therefore \text { Result is true for } n=1 .
\end{aligned}
\] \\
\hline State the assumption that the result is true for \(n=k\), i.e., assume \(13^{n+1}-7^{n}\) is a multiple of 6 for all \(k \geq 0\). & Assume true for \(n=k\) :
\[
u_{k}=13^{k+1}-7^{k}=6 m
\] \\
\hline Write the result for \(u_{k+1}\). Subtract a multiple of \(u_{k}\) to eliminate one of the terms. Here, it can be seen that \(7^{k+1}\) can be eliminated by subtracting \(7 u_{k}\). & \[
\begin{gathered}
u_{k+1}=13^{(k+1)+1}-7^{k+1}=13^{k+2}-7^{k+1} \\
u_{k+1}-7 u_{k}=13^{k+2}-7^{k+1}-7\left(13^{k+1}-7^{k}\right) \\
=13^{k+2}-7^{k+1}-7\left(13^{k+1}\right)+^{k+1} \\
=13^{k+2}-7\left(13^{k+1)} 7^{2+1}\right. \\
=13\left(13^{k+1}-7\left(11^{k+1}\right)\right. \\
=6 \times 13^{k+1} \\
\therefore \text { Result is true for } n=1 .
\end{gathered}
\] \\
\hline Write the conclusion. & If the statement is true for \(n=k\), then it is true for \(n=k+1\). Since the statement is true for \(n=0\), it is true for all \(n \geq 0 \in \mathbb{Z}\). \\
\hline
\end{tabular}

From the Matrices section of the course, it will have been shown that \(\boldsymbol{M}^{k} \boldsymbol{M}=\boldsymbol{M}^{k+1}\). This fact means that matrix multiplication can be used to prove results involving powers of matrices by induction. Example 5: \(\boldsymbol{M}=\left(\begin{array}{ll}2 & 2 \\ 0 & 1\end{array}\right)\). Prove by induction that \(\boldsymbol{M}^{n}=\left(\begin{array}{cc}2^{\mathrm{n}} & 2^{n+1}-2 \\ 0 & 1\end{array}\right)\) for \(n \geq 1 \in \mathbb{Z}\).










Divisibility problems can be extended by introducing multiple indices. In these cases, it may be easier to
 prove the statement is true for \(n=k+1\) by subtracting (or adding) multiples of terms from each other.
 Given one term that is divisible by some integer \(p\), if the difference between this term and another is also

Example 4: Prove \(13^{n+1}-7^{n}\) is divisible by 6 for all integers \(n \geq 0\).
\[
\begin{aligned}
& \text { If the statement is true for } n=k \text {, then it is true } \\
& \text { for } n=k+1 . \text { Since the statement is true for } \\
& n-0 \text { it is truo for } 2 \| n>0>\pi
\end{aligned}
\]
\[
n=0 \text {, it is true for all } n \geq 0 \in \mathbb{Z} \text {. }
\]

\section*{Powers of Matrices}

\section*{}```

