

 \overline{R}

 Δ

AB

B

 Δ

OOOO PMTEducation

AB

A vector \boldsymbol{a} from π to the point is needed. The point at \mathbf{r} 1 $\begin{pmatrix} 1 \ 1 \ 2 \end{pmatrix}$ is clearly on π so we can use this to find \boldsymbol{a} . 2

b.) This part is most quickly solved with the cartesian the point 5 5

cartesian equation for π .

The dot product of two vectors produces a scalar quantity. There is another way to 'multiply' vectors which gives a third vector. It is known as the vector or cross product. It is written as $a \times b$.

> coordinates of points on the line into the equation for the plane. intersection.

Since $|\boldsymbol{a} \times \boldsymbol{b}| = |\boldsymbol{a}| |\boldsymbol{b}| \sin \theta$, the area of a triangle with two sides \boldsymbol{a} and \boldsymbol{b} can be calculated using the cross product:

If \boldsymbol{a} and \boldsymbol{b} are parallel, then $\boldsymbol{a} \times \boldsymbol{b} = 0$, this follows from noting that if they are parallel then $\theta = 0$ so $\sin \theta = 0$.

Given two lines in 3D: $r_1 = a_1 + \lambda b_1$, $r_2 = a_2 + \mu b_2$, they intersect if there is a point for which $r_1 = r_2$. Otherwise, they are either parallel or skew. If b_1 and b_2 are parallel, then the lines must also be.

If the two lines are parallel, then the distance between them can be found more easily by choosing A arbitrarily then finding the shortest distance from A to the line.

Example 4: The line ℓ_1 is given by the equation $r_1 =$ | 0 $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ 0 $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ and the line ℓ_2 is given by 1 1 2

 $r_2 =$ $\left(1\right)$ 2 $\binom{2}{1}$ + $\mu \binom{2}{1}$, where λ and μ are free parameters, what is the shortest distance from 1 ℓ_1 to ℓ_2 ?

The vector from ℓ_1 to ℓ_2 can be found as $r_1 - r_2$. 0 1 0 $\bigg) + \lambda \bigg($ 1 0 1) − (1 1 2 $\Big)-\mu\Big($ 2 3 1 $\bigg) = \bigg($ $-1 + \lambda - 2\mu$ -3μ $-2 + \lambda - \mu$ ' When this vector is shortest it is perpendicular to $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ 1 1 2 1 '. $\overline{ }$ $-1 + \lambda - 2\mu$ -3μ $\begin{array}{cc} \n\sqrt{-2} + \lambda - \mu & \quad \sqrt{1} \\
-1 + \lambda - 2\mu & \quad \sqrt{2}\n\end{array}$ $\bigg) \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = 0 \implies -3 + 2\lambda - 3\mu = 0$ I -3μ $\begin{pmatrix} -1 + \lambda - 2\mu \\ -3\mu \\ -2 + \lambda - \mu \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ 3 $\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} = 0 \implies -4 + 3\lambda - 14\mu = 0$ The simultaneous equations can be solved to give the values of λ and μ which give the shortest vector \bm{r}_1 – r_{2} . $-3 + 2\lambda - 3\mu = 0 \implies \mu = -1 + \frac{2}{3}\lambda$ $\Rightarrow -4 + 3\lambda - 14\left(1 + \frac{2}{3}\lambda\right) = 0 = -18 - \frac{19}{3}\lambda$ $\Rightarrow \lambda = -\frac{54}{19}, \mu = -\frac{55}{19}$ The modulus of $r_1 - r_2$ with these values of λ and μ is the answer. $\frac{54}{19} + \frac{110}{19}$ $\bigg)^2 + \left(\frac{165}{19}\right)^2 + \left(-2 - \frac{54}{19} + \frac{55}{19}\right)^2 = \sqrt{83}$

point of intersection.

Further Vectors II Cheat Sheet **Added AQA A Level Further Maths: Core**

Shortest Distance from a Point to a Plane

gives the amount of \boldsymbol{a} in the direction of \boldsymbol{n} . Since this is

Example 6: a.) The plane π is given by the equation $\mathbf{r} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

```
This can be done quickly using the vector product.
```
 $|n|$

Vector Product (A level Only)

The vector product has the following properties:

- $|a \times b| = |a||b| \sin \theta$
- $a \times b$ is perpendicular to both a and b $\sqrt{a} h$ $\sqrt{b} h$

• In component form:
$$
\mathbf{a} \times \mathbf{b} = \begin{pmatrix} a_yb_z - b_ya_z \\ a_zb_x - b_za_x \\ a_xb_y - b_xa_y \end{pmatrix}
$$

_

 $A = \frac{1}{2} | \boldsymbol{a} \times \boldsymbol{b} |$

This makes the vector product useful for writing the equation of a straight line:

 $(r - a) \times b = 0$,

Example 1: A triangle is formed by the origin, (1,2,6) and (3,4,5). Find the area of the triangle.

Geometry of Lines

Example 2: The line
$$
\ell_1
$$
 is given by the equation $\mathbf{r}_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ and the line ℓ_2 is given by $\mathbf{r}_2 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$, where λ and μ are free parameters, do they intersect?

Shortest Distance from a Point to a Line

Given a line ℓ and a point A , the shortest distance between A and ℓ can be found. First, B , the point on ℓ which is closest to A , is found by noting that the vector AB must be perpendicular to ℓ . Having found B, the distance can be found as the modulus of AB .

Example 3: The line ℓ is given by $r_1 =$ 1 1 3 $+ \lambda \begin{pmatrix} 1 \\ 4 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 1 \ 4 \ 0 \end{pmatrix}$, where λ is a free parameter, what is the 0 shortest distance from ℓ to the point P, $(-1,1,0)$?

Shortest Distance Between Two Lines

The shortest distance between two lines is found using a similar idea. The shortest possible vector from one line to the other must be perpendicular to both lines. The points A and B are found by using this fact to set up simultaneous equations.

Geometry of Planes (A Level Only) Intersection of a Line and a Plane

In 3D, a plane and a line will always intersect at a point unless the line is parallel to the plane. The point of intersection can be found most easily using the cartesian equation for the plane.

Example 5: The line ℓ is given

n by
$$
\mathbf{r} = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix}
$$
, the plane π is given by $x + 2y + z = 10$. At what

point do they intersect?