OCR Further Maths AS-level Additional Pure

Formula Sheet

Sequences and Series

Behaviour of Sequences

Periodic	Terms of the sequence repeat regularly. The number of repeated terms is called the period.	$\begin{gathered} S=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n-1}, u_{n}, u_{1}, u_{2}, \ldots\right\} \\ \text { Periodic with period } n \end{gathered}$
Oscillating	Periodic with two terms.	$S=\left\{u_{1}, u_{2}, u_{1}, u_{2}, \ldots\right\}$
Convergent	Terms of the sequence get closer to a limiting value.	$\begin{gathered} S=\left(u_{n}\right) \\ \lim _{n \rightarrow \infty} u_{n}=k \end{gathered}$
Divergent	Sequence is not convergent, and the sum of the sequence is not finite.	$S=\left(u_{n}\right)$ $\lim _{n \rightarrow \infty} u_{n}$ does not exist $\sum_{n} u_{n}$ is undefined
Monotonic Increasing (or Decreasing)	Each term in the sequence is greater/less than or equal to the previous term	$S=\left(u_{n}\right)$ $u_{n} \geq u_{n-1}$ - monotonic increasing $u_{n} \leq u_{n-1}$ - monotonic decreasing

Fibonacci and Related Numbers
\(\left.\begin{array}{c|c}Fibonacci Recurrence

Relation

Golden Ratio \& u_{n+2}=u_{n+1}+u_{n}, u_{1}=1, u_{2}=1

Begins 1,1,2,3,5,8, ···\end{array}\right\}\)| Golden Ratio $\phi=\frac{1+\sqrt{5}}{2}$ is the limit of the ratio of |
| :---: |
| consecutive terms in the Fibonacci sequence. |
| Lucas Recurrence Relation |
| $u_{n+2}=u_{n+1}+u_{n}, u_{1}=1, u_{2}=3$
 Begins $1,3,4,7,11,18, \ldots$ |

Solving Recurrence Relations

$1^{\text {st }}$ order linear recurrence relations with constant coefficients	
Homogeneous $1^{\text {st }}$ order linear recurrence relation	$f(n)=0$ so, of the form $u_{n+1}=k u_{n}$
Complementary function	Solution to homogenous version of the recurrence relation. $1^{\text {st }}$ order linear will have the form $u_{n}=A \times r^{n}$
Particular solution	Any solution of the recurrence relation.
General solution	Sum of the complementary function and the particular
solution.	

Number Theory

Divisibility Tests

Divisible by 2	Last digit divisible by 2.
Divisible by 3	Sum of digits divisible by 3.
Divisible by 4	Number formed by final 2 digits divisible by 4.
Divisible by 5	Final digit is 0 or 5.
Divisible by 8	Number formed by final 3 digits divisible by 8.
Divisible by 9	Sum of digits divisible by 9.
Divisible by 11	Result of adding and subtracting digits in alternating order beginning at leftmost digit is divisible by 11.

Division Algorithm

If a is divided by b, where $0<b<a$, then there is a unique quotient q and residue/remainder r (with $r<b$) such that $a=b q+r$. If $r=0$, then $b \mid a$.

Finite (Modular) Arithmetic

$$
\text { If } a=n q+r \text { then } a \equiv r(\bmod n)
$$

Rules	If $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$ then:
$a+c \equiv b+d(\bmod n)$	$a-c \equiv b-d(\bmod n)$
$a c \equiv b d(\bmod n)$	$a^{k} \equiv b^{k}(\bmod n)$

Linear Congruences

Linear congruence	Equation of the form $a x \equiv b(\bmod n)$.
Condition for a solution	$d \mid b$ where d is the highest common factor of a and n. So if n is prime then $a x \equiv b(\bmod n)$ will have a solution as $h c f(a, n)=1$ and $1 \mid b$ for all integers b.
Solutions	$x_{1}+\frac{n}{d} \times r$ where x_{1} is a solution found by inspection and $r=0,1, \ldots ., d-1$.

Prime Numbers

Prime number	An integer greater than 1 with no divisors other than 1 and itself.			
Composite number	An integer with at least one divisor other than 1 and			
itself.		$	$	Two or more integers are coprime if 1 is their only
:---:				
common factor.				

Useful results	For integers a, b, c :
If a and b are coprime and $a \mid c$ and $b \mid c$,	If $a \mid b$ and $c \mid d$, then $a c \mid b d$.
then $a b \mid c$.	If $a \mid b$ and $a \mid c$, then $a \mid(b x+c y)$ where
If $a \mid b$ and $b \mid c$, then $a \mid c$.	x, y are integers.
$h c f(a, b)$ can be found by finding the smallest integer that can be written as $b x+c y$.	If $h c f(a, b)=1$, then a and b are coprime.

Euclid's Lemma

Euclid's Lemma	If a prime number p divides into the composite number $a_{1} \times a_{2} \times \ldots \times a_{n}$ then p must divide into at least one of a_{1} to a_{n}.
Result from Euclid's	
Lemma	If $a \mid b c$, where a and b are coprime, then $a \mid c$.

Groups

Binary operations

Binary operation

Definitions

Closed

Commutative

Associative
Identity element e for the operation *
Inverse a^{-1} for element a with operation *

A process involving two members of a set.

Consider elements a and b of a set S.
A set is closed under an operation $*$ if for all $a, b \in S$,

$$
a * b \in S
$$

The operation $*$ is commutative if for all $a, b \in S$, $a * b=b * a$.
The operation $*$ is associative if for all $a, b \in S$, $(a * b) * c=a *(b * c)$.
$e \in S$ satisfies: $a * e=e * a=a$ for all elements $a \in S$.
$a^{-1} \in S$ satisfies: $a * a^{-1}=a^{-1} * a=e$ where e is the identity element.
$a^{-1} \in S$ satisfies: $a^{-1}=a$ so $a^{2}=e$ where e is the identity element.

Definition of a Group

Conditions for a set to be a group under operation $*$
Closed
Associative
The set contains an identity element e
Every element of the set has an inverse

Abelian Group
If all elements of the group commute under the binary operation.

Orders and elements of groups

Order of a group, $|G|$
Order of an element

The number of elements the group contains.
The smallest power an element is raised to that gives the identity element.

Subgroups

Subgroup	H is a subgroup of the group G if H is a subset of G and H is also a group under the same binary operation.
Trivial subgroup	The trivial subgroup is $\{e\}$ where e is the group identity element.
Proper subgroup	A subgroup of G which is not G itself.

Cyclic groups

Cyclic groups
Every element of the group G is of the form a^{n}, where $a \in G$ and $n \in \mathbb{Z} . a$ is called the generator of the group and is not necessarily unique.

Properties of Cyclic Groups
Commutative
At least one element of the group must have order n

Properties of groups

Order of group is 1	Group is $\{e\}$.
Order of group is $2,3,4,5$, or 7	Group is cyclic.
Order of group is 4	Group is cyclic where: at least one element has order 4 or group is Klein group.
Order of group is 6	Group is cyclic if one element has order 6, otherwise group forms a symmetric group.

Further Vectors

Vector Product

$$
\boldsymbol{a} \times \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \sin \theta \widehat{\boldsymbol{n}},
$$

where $\boldsymbol{a} . \boldsymbol{b} . \widehat{\boldsymbol{n}}$. in that order. form a right-hand triple.

	Observations
Magnitude	$\|\boldsymbol{a} \times \boldsymbol{b}\|=\|\boldsymbol{a}\|\|\boldsymbol{b}\|\|\sin \theta\|$
Condition for parallel or co-linear vectors	$\boldsymbol{a} \times \boldsymbol{b}=\mathbf{0}$ given that $\boldsymbol{a} \neq \mathbf{0}$ or $\boldsymbol{b} \neq \mathbf{0}$
Not commutative	$\boldsymbol{a} \times \boldsymbol{b}=-\boldsymbol{b} \times \boldsymbol{a}$
Distributive over addition	$\boldsymbol{a} \times(\boldsymbol{b}+\boldsymbol{c})=\boldsymbol{a} \times \boldsymbol{b}+\boldsymbol{a} \times \boldsymbol{c}$
Linear	$\boldsymbol{a} \times \lambda \boldsymbol{b}=\lambda \boldsymbol{a} \times \boldsymbol{b}=\lambda(\boldsymbol{a} \times \boldsymbol{b})$
Equation of a straight line	$(\boldsymbol{r}-\boldsymbol{a}) \times \boldsymbol{d}=\mathbf{0}$

Area of triangle with sides a, b.	$\frac{1}{2}\|a \times b\|$
Area of parallelogram with sides $\boldsymbol{a}, \boldsymbol{b}$	$\|\boldsymbol{a} \times \boldsymbol{b}\|$

Surfaces and Partial Differentiation

Partial Differentiation

Mixed derivative theorem
$f_{x y}=f_{y x}$ for suitably well-defined continuous functions
f.

Stationary Points

Stationary points of a function $f(x, y)$ occur when $f_{x}=f_{y}=0$. There are three types of stationary points: maximum, minimum or saddle.

