

OCR Further Maths AS-level

Additional Pure

Formula Sheet

Provided in formula book

Not provided in formula book

This work by <u>PMT Education</u> is licensed under <u>CC BY-NC-ND 4.0</u>

Sequences and Series

Behaviour of Sequences

Periodic	Terms of the sequence repeat regularly. The number of repeated terms is called the period.	$S = \{u_1, u_2, u_3, \dots, u_{n-1}, u_n, u_1, u_2, \dots\}$ Periodic with period n
Oscillating	Periodic with two terms.	$S = \{u_1, u_2, u_1, u_2,\}$
Convergent	Terms of the sequence get closer to a limiting value.	$S = (u_n)$ $\lim_{n \to \infty} u_n = k$
Divergent	Sequence is not convergent, and the sum of the sequence is not finite.	$S = (u_n)$ $\lim_{n o \infty} u_n$ does not exist $\sum_n u_n$ is undefined
Monotonic Increasing (or Decreasing)	Each term in the sequence is greater/less than or equal to the previous term	$\begin{split} S &= (u_n) \\ u_n \geq u_{n-1} - \text{monotonic increasing} \\ u_n \leq u_{n-1} - \text{monotonic decreasing} \end{split}$

Fibonacci and Related Numbers

Fibonacci Recurrence Relation	$u_{n+2} = u_{n+1} + u_n, \ u_1 = 1, u_2 = 1$ Begins 1, 1, 2, 3, 5, 8,
Golden Ratio	Golden Ratio $\phi = \frac{1+\sqrt{5}}{2}$ is the limit of the ratio of consecutive terms in the Fibonacci sequence.
Lucas Recurrence Relation	$u_{n+2} = u_{n+1} + u_n, \ u_1 = 1, u_2 = 3$ Begins 1, 3, 4, 7, 11, 18,

🕟 www.pmt.education

0)

▶ Image: Second Second

Solving Recurrence Relations

1 st order linear recurrence relations with constant coefficients	$u_{n+1} = ku_n + f(n)$
Homogeneous 1 st order linear recurrence relation	$f(n) = 0$ so, of the form $u_{n+1} = ku_n$
Complementary function	Solution to homogenous version of the recurrence relation. 1 st order linear will have the form $u_n = A \times r^n$
Particular solution	Any solution of the recurrence relation.
General solution	Sum of the complementary function and the particular solution.
Recurrence system	Consists of a recurrence relation, initial conditions, and the range of the variable <i>n</i> .

Number Theory

Divisibility Tests

Divisible by 2	Last digit divisible by 2.
Divisible by 3	Sum of digits divisible by 3.
Divisible by 4	Number formed by final 2 digits divisible by 4.
Divisible by 5	Final digit is 0 or 5.
Divisible by 8	Number formed by final 3 digits divisible by 8.
Divisible by 9	Sum of digits divisible by 9.
Divisible by 11	Result of adding and subtracting digits in alternating order beginning at leftmost digit is divisible by 11.

Division Algorithm

If *a* is divided by *b*, where 0 < b < a, then there is a unique quotient *q* and residue/remainder *r* (with r < b) such that a = bq + r. If r = 0, then b|a.

0

▶ Image: Second Second

www.pmt.education

Finite (Modular) Arithmetic

If $a = nq + r$ then $a \equiv r \pmod{n}$	
Rules	If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then:
$a + c \equiv b + d \pmod{n}$	$a-c\equiv b-d\ (\mathrm{mod}\ n)$
$ac \equiv bd \pmod{n}$	$a^k \equiv b^k \pmod{n}$

Linear Congruences

Linear congruence	Equation of the form $ax \equiv b \pmod{n}$.
Condition for a solution	d b where d is the highest common factor of a and n . So if n is prime then $ax \equiv b \pmod{n}$ will have a solution as $hcf(a, n) = 1$ and $1 b$ for all integers b .
Solutions	$x_1 + \frac{n}{d} \times r$ where x_1 is a solution found by inspection and $r = 0, 1,, d - 1$.

Prime Numbers

Prime number	An integer greater than 1 with no divisors other than 1 and itself.
Composite number	An integer with at least one divisor other than 1 and itself.
Coprime (relatively prime)	Two or more integers are coprime if 1 is their only common factor.
Fundamental theorem of arithmetic	Every integer greater than 1 is either prime or the unique product of primes (ignoring rearrangements).

0

▶ Image: Second Second

Useful results	For integers <i>a</i> , <i>b</i> , <i>c</i> :
If a and b are coprime and $a c$ and $b c$, then $ab c$.	If $a b$ and $c d$, then $ac bd$.
If $a b$ and $b c$, then $a c$.	If $a b$ and $a c$, then $a (bx + cy)$ where x, y are integers.
hcf(a, b) can be found by finding the smallest integer that can be written as bx + cy.	If $hcf(a, b) = 1$, then a and b are coprime.

Euclid's Lemma

Euclid's Lemma	If a prime number p divides into the composite number $a_1 \times a_2 \times \times a_n$ then p must divide into at least one of a_1 to a_n .
Result from Euclid's Lemma	If $a bc$, where a and b are coprime, then $a c$.

🕟 www.pmt.education

 \odot

▶ Image: Second Second

Groups

Binary operations

Binary operation	A process involving two members of a set.
Definitions	Consider elements a and b of a set S .
Closed	A set is closed under an operation $*$ if for all $a, b \in S$, $a * b \in S$.
Commutative	The operation $*$ is commutative if for all $a, b \in S$, a * b = b * a.
Associative	The operation $*$ is associative if for all $a, b \in S$, (a * b) * c = a * (b * c).
Identity element <i>e</i> for the operation *	$e \in S$ satisfies: $a * e = e * a = a$ for all elements $a \in S$.
Inverse a^{-1} for element a with operation *	$a^{-1} \in S$ satisfies: $a * a^{-1} = a^{-1} * a = e$ where e is the identity element.
Self-inverse a^{-1}	$a^{-1} \in S$ satisfies: $a^{-1} = a$ so $a^2 = e$ where e is the identity element.

Definition of a Group

Conditions for a set to be a group under operation *
Closed
Associative
The set contains an identity element <i>e</i>
Every element of the set has an inverse

	Abelian Group	If all elements of the group commute under the binary operation.
Orders and elements of groups		ers and elements of groups

Order of a group, $ G $	The number of elements the group contains.
Order of an element	The smallest power an element is raised to that gives the identity element.

0

•

▶ Image: Second Second

Subgroups

Subgroup	H is a subgroup of the group G if H is a subset of G and H is also a group under the same binary operation.
Trivial subgroup	The trivial subgroup is $\{e\}$ where e is the group identity element.
Proper subgroup	A subgroup of G which is not G itself.

Cyclic groups

Cyclic groups	Every element of the group G is of the form a^n , where $a \in G$ and $n \in \mathbb{Z}$. a is called the generator of the group
	and is not necessarily unique.

Properties of Cyclic Groups	
Commutative	
At least one element of the group must have order $m{n}$	

Properties of groups

Order of group is 1	Group is $\{e\}$.
Order of group is 2,3,4,5, or 7	Group is cyclic.
Order of group is 4	Group is cyclic where: at least one element has order 4 or group is Klein group.
Order of group is 6	Group is cyclic if one element has order 6, otherwise group forms a symmetric group.

N www.pmt.education

0

Further Vectors

Vector Product

 $a \times b = |a||b| \sin \theta \, \hat{n}$, where $a. b. \hat{n}$. in that order. form a right-hand triple.

Observations		
Magnitude	$ \boldsymbol{a} \times \boldsymbol{b} = \boldsymbol{a} \boldsymbol{b} \sin\theta $	
Condition for parallel or co-linear vectors	a imes b = 0 given that $a eq 0$ or $b eq 0$	
Not commutative	$\boldsymbol{a} \times \boldsymbol{b} = -\boldsymbol{b} \times \boldsymbol{a}$	
Distributive over addition	$a \times (b + c) = a \times b + a \times c$	
Linear	$\boldsymbol{a} \times \lambda \boldsymbol{b} = \lambda \boldsymbol{a} \times \boldsymbol{b} = \lambda (\boldsymbol{a} \times \boldsymbol{b})$	
Equation of a straight line	(r-a) imes d = 0	

Area of triangle with sides <i>a</i> , <i>b</i> .	$\frac{1}{2} a imes b $
Area of parallelogram with sides a , b	$ a \times b $

Surfaces and Partial Differentiation

Partial Differentiation

Mixed derivative theorem	$f_{xy} = f_{yx}$ for suitably well-defined continuous functions
	f.

Stationary Points

Stationary points of a function f(x, y) occur when $f_x = f_y = 0$. There are three types of stationary points: maximum, minimum or saddle.

▶ Image: Second Second

🕟 www.pmt.education

