

OCR Further Maths A-level

Additional Pure

Formula Sheet

Provided in formula book

Not provided in formula book

This work by <u>PMT Education</u> is licensed under <u>CC BY-NC-ND 4.0</u>

Sequences and Series

Behaviour of Sequences

Periodic	Terms of the sequence repeat regularly. The number of repeated terms is called the period.	$S = \{u_1, u_2, u_3, \dots, u_{n-1}, u_n, u_1, u_2, \dots\}$ Periodic with period n
Oscillating	Periodic with two terms.	$S = \{u_1, u_2, u_1, u_2,\}$
Convergent	Terms of the sequence get closer to a limiting value.	$S = (u_n)$ $\lim_{n \to \infty} u_n = k$
Divergent	Sequence is not convergent, and the sum of the sequence is not finite.	$S = (u_n)$ $\lim_{n \to \infty} u_n \text{ does not exist}$ $\sum_n u_n \text{ is undefined}$
Monotonic Increasing (or Decreasing)	Each term in the sequence is greater/less than or equal to the previous term	$S = (u_n)$ $u_n \ge u_{n-1} - \text{monotonic increasing}$ $u_n \le u_{n-1} - \text{monotonic decreasing}$

Fibonacci and Related Numbers

Fibonacci Recurrence Relation	$u_{n+2} = u_{n+1} + u_n, \ u_1 = 1, u_2 = 1$ Begins 1, 1, 2, 3, 5, 8,
Golden Ratio	Golden Ratio $\phi = \frac{1+\sqrt{5}}{2}$ is the limit of the ratio of consecutive terms in the Fibonacci sequence.
Lucas Recurrence Relation	$u_{n+2} = u_{n+1} + u_n, \ u_1 = 1, u_2 = 3$ Begins 1, 3, 4, 7, 11, 18,

•

Solving Recurrence Relations

1 st order linear recurrence relations with constant coefficients	$u_{n+1} = ku_n + f(n)$
Homogeneous 1 st order linear recurrence relation	$f(n) = 0$ so, of the form $u_{n+1} = ku_n$.
Complementary function	Solution to homogenous version of the recurrence relation. 1^{st} order linear will have the form $u_n = A \times r^n$.
Particular solution	Any solution of the recurrence relation.
General solution	Sum of the complementary function and the particular solution.
Recurrence system	Consists of a recurrence relation, initial conditions, and the range of the variable <i>n</i> .
2 nd order linear recurrence relations with constant coefficients	$u_{n+2} = k_1 u_{n+1} + k_2 u_n + f(n)$
Homogeneous 2 nd order linear recurrence relation	$f(n) = 0$ so, of the form $u_{n+2} = k_1 u_{n+1} + k_2 u_n$
Auxiliary/characteristic equation	Equation obtained after substituting $u_n = r^n$ into 2 nd order homogenous recurrence relation and dividing through by r^n .

Roots of auxiliary equation	Form of complementary function
Real and distinct roots r_1 and r_2	$Ar_1^n + Br_2^n$
Repeated roots r	$(A + Bn)r^n$
Complex roots z_1 and z_2	$Az_1^n + Bz_2^n$

0

•

▶ Image: Second Second

Number Theory

Divisibility Tests

Divisible by 2	Last digit divisible by 2.
Divisible by 3	Sum of digits divisible by 3.
Divisible by 4	Number formed by final 2 digits divisible by 4.
Divisible by 5	Final digit is 0 or 5.
Divisible by 8	Number formed by final 3 digits divisible by 8.
Divisible by 9	Sum of digits divisible by 9.
Divisible by 11	Result of adding and subtracting digits in alternating order beginning at leftmost digit is divisible by 11.

Division Algorithm

If *a* is divided by *b*, where 0 < b < a, then there is a unique quotient *q* and residue/remainder *r* (with r < b) such that a = bq + r. If r = 0, then b|a.

Finite (Modular) Arithmetic

If a = nq + r then $a \equiv r \pmod{n}$

Rules	If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then:
$a+c\equiv b+d \;(\mathrm{mod}\;n)$	$a-c\equiv b-d \pmod{n}$
$ac \equiv bd \pmod{n}$	$a^k \equiv b^k \pmod{n}$

0

▶ Image: Second Second

Linear Congruences

Linear congruence	Equation of the form $ax \equiv b \pmod{n}$.
Condition for a solution	d b where d is the highest common factor of $aand n. So if n is prime then ax \equiv b \pmod{n}will have a solution as hcf(a, n) = 1 and 1 bfor all integers b.$
Solutions	$x_1 + \frac{n}{d} \times r$ where x_1 is a solution found by inspection and $r = 0, 1,, d - 1$.

Quadratic Residues

If the congruence $x^2 \equiv q$ has a solution, then q is a quadratic residue (mod n).

Prime Numbers

Prime number	An integer greater than 1 with no divisors other than 1 and itself.
Composite number	An integer with at least one divisor other than 1 and itself.
Coprime (relatively prime)	Two or more integers are coprime if 1 is their only common factor.
Fundamental theorem of arithmetic	Every integer greater than 1 is either prime or the unique product of primes (ignoring rearrangements).

O

▶ Image: Second Second

Useful results	For integers <i>a</i> , <i>b</i> , <i>c</i> :
If a and b are coprime and $a c$ and $b c$, then $ab c$.	If $a b$ and $c d$, then $ac bd$.
If $a b$ and $b c$, then $a c$.	If $a b$ and $a c$, then $a (bx + cy)$ where x, y are integers.
hcf(a, b) can be found by finding the smallest integer that can be written as $bx + cy$.	If $hcf(a, b) = 1$, then a and b are coprime.

Euclid's Lemma

Euclid's Lemma	If a prime number p divides into the composite number $a_1 \times a_2 \times \times a_n$ then p must divide into at least one of a_1 to a_n .
Result from Euclid's Lemma	If $a bc$, where a and b are coprime, then $a c$.

Fermat's Little Theorem

Form 1	If p is prime and $hcf(a, p) = 1$, then $a^{p-1} \equiv 1 \pmod{p}$.
Form 2	If p is prime, then $a^p \equiv a \pmod{p}$.
Warning about pseudo- primes	The converse does not hold. There are pseudo- primes x to base a such that $a^{x-1} \equiv 1 \pmod{x}$ but x is a composite number.

The order of a modulo p

	The smallest positive integer n such that $a^n \equiv$
The order of a modulo p	1 (mod p), (gcd(a , p) = 1 and $a \neq 1$. Notice
	that this is not necessarily $p-1$.

Binomial Theorem

 $(a+b)^p \equiv a^p + b^p \pmod{p}$, where p is prime

0

Groups

Binary Operations

A process involving two members of a set.	Binary operation	A process involving two members of a set.
---	------------------	---

Definitions	Consider elements <i>a</i> and <i>b</i> of a set <i>S</i> .
Closed	A set is closed under an operation $*$ if for all $a, b \in S$, $a * b \in S$.
Commutative	The operation $*$ is commutative if for all $a, b \in S$, a * b = b * a.
Associative	The operation $*$ is associative if for all $a, b \in S$, (a * b) * c = a * (b * c).
Identity element <i>e</i> for the operation *	$e \in S$ satisfies: $a * e = e * a = a$ for all elements $a \in S$.
Inverse a^{-1} for element a with operation $*$	$a^{-1} \in S$ satisfies: $a * a^{-1} = a^{-1} * a = e$ where <i>e</i> is the identity element.
Self-inverse a^{-1}	$a^{-1} \in S$ satisfies: $a^{-1} = a$ so $a^2 = e$ where e is the identity element.

Definition of a group

Conditions for a set to be a group under operati	on *
Closed	
Associative	
The set contains an identity element e	
Every element of the set has an inverse	

Abelian Group If all elements of the group commute under the binary operation.

0

▶ Image: Second Second

Orders and Elements of Groups

Order of a group, $ G $	The number of elements the group contains.
Order of an element	The smallest power an element is raised to that gives the identity element.

Subgroups

Subgroup	H is a subgroup of the group G if H is a subset of G and H is also a group under the same binary operation.
Trivial subgroup	The trivial subgroup is $\{e\}$ where e is the group identity element.
Proper subgroup	A subgroup of G which is not G itself.

Cyclic groups

Cyclic groups	Every element of the group G is of the form a^n , where $a \in G$ and $n \in \mathbb{Z}$. Notice that a is called the generator
	of the group and is not necessarily unique.

Properties of cyclic grou	ips
Commutative	
At least one element of the group m	nust be order <i>n</i>

Properties of Groups

Order of group is 1	Group is $\{e\}$.
Order of group is 2,3,4,5 or 7	Group is cyclic.
Order of group is 4	Group is cyclic where: at least one element has order 4 or group is Klein group.
Order of group is 6	Group is cyclic if one element has order 6, otherwise group forms a symmetric group.

Lagrange's Theorem

The order of a subgroup H is a factor of the order of the group G.

0

DOfS PMTEducation

Implications

The order of each element of G is a factor of the order of G.

If G has an order which is prime, then G has no proper subgroups.

If H has an order p, where p is prime, then every non-identity element of H has order p.

Isomorphism

Two groups G and H are isomorphic if they have the same structure and have a one-to-one correspondence between elements

▶
 O

 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O

Further Vectors

Vector Produc

 $a \times b = |a||b| \sin \theta \hat{n}$, where a, b, \hat{n} , in that order, form a right hand triple.

Observations	
Magnitude	$ \boldsymbol{a} \times \boldsymbol{b} = \boldsymbol{a} \boldsymbol{b} \sin\theta$
Condition for parallel or co-linear vectors	$oldsymbol{a} imes oldsymbol{b} = oldsymbol{0}$ given that $oldsymbol{a} eq oldsymbol{0}$ or $oldsymbol{b} eq oldsymbol{0}$
Not commutative	$\boldsymbol{a} \times \boldsymbol{b} = -\boldsymbol{b} \times \boldsymbol{a}$
Distributive over addition	$a \times (b + c) = a \times b + a \times c$
Linear	$\boldsymbol{a} \times \lambda \boldsymbol{b} = \lambda \boldsymbol{a} \times \boldsymbol{b} = \lambda (\boldsymbol{a} \times \boldsymbol{b})$
Equation of a straight line	$(r-a) \times d = 0$

Properties of scalar triple product $(a \times b) \cdot c$ Vectors moving in cyclic $(a \times b) \cdot c = (b \times c) \cdot a = (c \times a) \cdot b$ order For *a*, *b*, *c* to be co-planar $(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c} = 0$ If *a* and *b* are parallel or $(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c} = 0$ since $\boldsymbol{a} \times \boldsymbol{b} = 0$ collinear $|c_1 \quad a_1|$ b_1 $(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c} = \boldsymbol{c} \cdot (\boldsymbol{a} \times \boldsymbol{b}) = det \begin{vmatrix} \boldsymbol{c}_2 & \boldsymbol{a}_2 \end{vmatrix}$ b_2 b_3 $|c_3|$ a_3

Area of triangle with sides a , b .	$\frac{1}{2} a \times b $
Area of parallelogram with sides a , b	$ a \times b $
Volume of tetrahedra with base with sides <i>a</i> , <i>b</i> and adjacent side <i>c</i>	$\frac{1}{6} (a \times b) \cdot c $
Volume of parallelopipeds with base with sides a, b , adjacent side c and height $ c \cos \theta$.	$ (\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c} $

▶ Image: Second Second

Surfaces and Partial Differentiation

Partial Differentiation

Mixed derivative theorem $f_{xy} = f_{yx}$ for suitably well-defined continuous functions f.

Stationary Points

Stationary points of a function f(x, y) occur when $f_x = f_y = 0$. There are three types of stationary points: maximum, minimum or saddle.

For 3-D surfaces given in the form z = f(x, y) the Hessian Matrix is given by $H = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}$

Local minimum	$ H > 0$ and $f_{xx} > 0$
Local maximum	$ H > 0$ and $f_{xx} < 0$
Saddle point	H < 0
Inconclusive	H = 0

Tangent Planes

The equation of a tangent plane to the curve at a given point (x, y, z) = (a, b, f(a, b)) is $z = f(a, b) + (x - a)f_x(a, b) + (y - b)f_y(a, b)$

location www.pmt.education

Further Calculus

Reduction Formulae

$I_n = \int \sin^n x dx$	Write as $\int \sin x \times \sin^{n-1} x dx$
$I_n = \int \tan^n x dx$	Write as $\int \tan^2 x \times \tan^{n-2} x dx$

Arc Lengths and Surface Areas

Cartesian arc length	$\int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$
Parametric arc length	$\int_{a}^{b} \sqrt{\dot{x}^2 + \dot{y}^2} dt$
Cartesian surface area of revolution about the x —axis	$2\pi \int_{a}^{b} y \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$
Cartesian surface area of revolution about the y —axis	$2\pi \int_{c}^{d} x \sqrt{1 + \left(\frac{dx}{dy}\right)^{2}} dy$
Parametric surface area of revolution about the x —axis	$2\pi \int_{a}^{b} y(t) \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$
Parametric surface area of revolution about the y —axis	$2\pi \int_{c}^{d} x(t) \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$

www.pmt.education DOOTS PMTEducation

•

