

Edexcel Further Maths AS-level Further Pure 2

Formula Sheet

Provided in formula book

Not provided in formula book

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Neww.pmt.education 🛛 🖸 😳 PMTEducation

Groups

Lagrange's theorem

If *H* is a subgroup of a finite group *G* then |H| divides |G|

Further Matrix Algebra

Eigenvalues and Eigenvectors

An eigenvector of a matrix *A* is non-zero column vector *x*, satisfying the equation $Ax = \lambda x$, where λ is a scalar called the eigenvalue corresponding to the eigenvalue *x*. The eigenvalues of *A* satisfy the characteristic equation det $(A - \lambda I) = 0$

Form of the diagonal	$D = P^{-1}AP$ where <i>P</i> consists of the eigenvectors of <i>A</i>	
matrix, D , of a matrix A	D has the respective eigenvalues of A on the leading	
	ulayonal	

Cayley-Hamilton theorem	Every square matrix M satisfies its characteristic equation

Complex Numbers

Loci

For $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$

Loci of points <i>z</i> such that $ z - z_1 = r$	Circle with centre (x_1, y_1) and radius r
Loci of points z such that $ z - z_1 = z - z_2 $	Perpendicular bisector of the segment of the line joining z_1 and z_2
Loci of points z such that $ z - a = k z - b $, where $a, b \in \mathbb{C}$ and $k \in \mathbb{R}, k > 0, k \neq 1$	Circle (find the centre and radius by finding the Cartesian equation)
Locus of points z such that $\arg(z - z_1) = \theta$	Half line from, but not including z_1 that has an angle θ with the line from z_1 parallel to the real axis
Locus of points z such that $\arg\left(\frac{z-a}{z-b}\right) = \theta, \ \theta \in \mathbb{R}, > 0$	Arc of a circle with endpoints at the points representing $a, b \in \mathbb{C}$

▶ Image: Second Second

Number Theory

Bezout's identity	If $a, b \neq 0, a, b \in \mathbb{Z}$, then there exists $x, y \in \mathbb{Z}$ such that	
	gcd(a,b) = ax + by	

Further sequences and series

First Order Recurrence Relations

Solution of the recurrence relation $u_n = au_{n-1}$	$u_n = u_0 a^n$ or $u_n = u_1 a^{n-1}$
Solution to the recurrence relation $u_n = u_{n-1} + g(n)$	$u_n = u_0 + \sum_{r=1}^n g(r)$

Particular Solutions for Recurrence Relations of the Form $u_n = au_{n-1} + g(n)$

Form of $g(n)$	Particular solution
p with $a \neq 1$	λ
$pn + q$ with $a \neq 1$	$\lambda n + \mu$
kp^n with $p \neq a$	λp^n
ka ⁿ	$\lambda n a^n$
p with $a = 1$	λn
pn + q with $a = 1$	$\lambda n^2 + \mu n$

www.pmt.education DOO PMTEducation

 \odot