

Edexcel Further Maths A-level Further Pure 2

Formula Sheet

Provided in formula book

Not provided in formula book

This work by <u>PMT Education</u> is licensed under <u>CC BY-NC-ND 4.0</u>

Groups

Lagrange's Theorem

If *H* is a subgroup of a finite group *G* then |H| divides |G|.

Further Calculus

Reduction Formulae

Integration by parts	$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$
----------------------	--

Arc Lengths

Arc length <i>s</i> on curve with Cartesian equation $y = f(x)$	$s = \int \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$
Arc length <i>s</i> on the curve with Cartesian equation $x = f(y)$	$s = \int \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy$
Arc length <i>s</i> on the parametrically defined curve $x = x(t), y = y(t)$	$s = \int \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$
Arc length s on the curve defined by the polar equation $r = f(\theta)$	$s = \int \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$

🕟 www.pmt.education

▶ Image: PMTEducation

Area of a Surface of Revolution

Area of the surface of revolution, <i>S</i> , of the Cartesian curve $y = f(x)$ after being rotated 2π radians about the <i>x</i> -axis	$S = 2\pi \int y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$
Area of the surface of revolution, <i>S</i> , of the Cartesian curve $x = f(y)$ after being rotated 2π radians about the <i>y</i> -axis	$S = 2\pi \int_{y_A}^{y_B} x \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy$
Area of the surface of revolution, <i>S</i> , of the parametrically defined curve $x = x(t), y = y(t)$ after rotation around the <i>x</i> -axis:	$S = 2\pi \int y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$
Area of the surface of revolution, <i>S</i> , of the parametrically defined curve $x = x(t), y = y(t)$ after rotation around the <i>y</i> -axis:	$S = 2\pi \int x \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$
Area of the surface of revolution, <i>S</i> , of the curve defined by the polar equation $r = f(\theta)$ rotated about the initial line, $\theta = 0$	$S = 2\pi \int r \sin \theta \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$
Area of the surface of revolution, <i>S</i> , of the curve defined by the polar equation $r = f(\theta)$ rotated about the line $\theta = \pm \frac{\pi}{2}$	$S = 2\pi \int r \cos \theta \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$

Further Matrix Algebra

Eigenvalues and Eigenvectors

An eigenvector of a matrix *A* is non-zero column vector *x*, satisfying the equation $Ax = \lambda x$, where λ is a scalar called the eigenvalue corresponding to the eigenvalue *x*.

The eigenvalues of *A* satisfy the characteristic equation $det(\mathbf{A} - \lambda \mathbf{I}) = 0$

		Form of the diagonal matrix, D , of matrix A	$D = P^{-1}AP$ where <i>P</i> consists of the eigenvectors of <i>A</i> , <i>D</i> has the respective eigenvalues of A on the leading diagonal
--	--	--	---

Cayley-Hamilton theorem

Every square matrix M satisfies its characteristic equation

▶ Image: Second Second

Complex Numbers

Loci

For $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$

Loci of points z such that $ z - z_1 = r$	Circle with centre (x_1, y_1) and radius r
Loci of points z such that $ z - z_1 = z - z_2 $	Perpendicular bisector of the segment of the line joining z_1 and z_2
Loci of points z such that $ z - a = k z - b $, where $a, b \in \mathbb{C}$ and $k \in \mathbb{R}, k > 0, k \neq 1$	Circle (find the centre and radius by finding the Cartesian equation)
Locus of points z such that $\arg(z - z_1) = \theta$	Half line from, but not including z_1 that has an angle θ with the line from z_1 parallel to the real axis
Locus of points <i>z</i> such that $\arg\left(\frac{z-a}{z-b}\right) = \theta, \ \theta \in \mathbb{R}, > 0$	Arc of a circle with endpoints at the points representing $a, b \in \mathbb{C}$

Number Theory

Bezout's Identity	If $a, b \neq 0, a, b \in \mathbb{Z}$, then there exists $x, y \in \mathbb{Z}$ such that
	gcd(a,b) = ax + by

	For p prime and $a \in \mathbb{Z}$ then	
Fermat's Little		$a^p \equiv a \pmod{p}$.
Theorem	If a is not divisible by p then	
		$a^{p-1} \equiv 1 \pmod{p}.$

Number of subsets of a set <i>S</i> with <i>n</i> elements	2 ⁿ
Number of permutations of <i>n</i> items	<i>n</i> !
Number of permutations of a selection of r items from a set of n items	${}^{n}P_{r} = \frac{n!}{(n-r)!}$
Number of permutations of n items, with r identical	$\frac{n!}{r!}$
Number of permutations of n items with sets of $r_1, r_2,, r_n$ identical	$\frac{n!}{r_1! \times r_2! \times \ldots \times r_n!}$
Number of combinations of r items from an original set of n	${}^{n}\mathcal{C}_{r} = \frac{n!}{(n-r)!r!}$

Further sequences and series

First Order Recurrence Relations

Solution of the recurrence relation $u_n = au_{n-1}$	$u_n = u_0 a^n$ or $u_n = u_1 a^{n-1}$
Solution to the recurrence relation $u_n = u_{n-1} + g(n)$	$u_n = u_0 + \sum_{r=1}^n g(r)$

Particular Solutions for Recurrence Relations of the Form $u_n = au_{n-1} + g(n)$

Form of $g(n)$	Particular solution
p with $a \neq 1$	λ
$pn + q$ with $a \neq 1$	$\lambda n + \mu$
kp^n with $p \neq a$	λp^n
ka ⁿ	λna^n
p with $a = 1$	λn
pn + q with $a = 1$	$\lambda n^2 + \mu n$

Second Order Recurrence Relations

Particular Solutions for Recurrence Relations of the Form $u_n = au_{n-1} + bu_{n-2} + g(n)$, with Auxiliary Roots α and β

Form of $g(n)$	Form of particular solution
p, and $\alpha, \beta \neq 1$	λ
$pn + q$ and $\alpha, \beta \neq 1$	$\lambda n + \mu$
kp^n and $p \neq \alpha, \beta$	λp^n
$p \text{ and } \alpha = 1, \beta \neq 1$	λn
$pn + q$ and $\alpha = 1, \beta \neq q$	$\lambda n^2 + \mu n$
p and $lpha=eta=1$	λn^2
$pn + q$ and $\alpha = \beta = 1$	$\lambda n^3 + \mu n^2$
ka^n and $\alpha \neq \beta$	$\lambda n \alpha^n$
ka^n and $\alpha = \beta$	$\lambda n^2 lpha^n$

