Matrix Algebra Cheat Sheet

Eigenvectors and Eigenvalues

If a matrix A transforms a non-zero vector v such that the output is a scalar multiple of v,

 $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$

then **v** is called an **eigenvector** of matrix **A**, with λ its corresponding **eigenvalue**. Eigenvectors are special to a matrix transformation, as their direction is unchanged during a linear transformation - they get stretched or squashed. The equation above is called the eigenvalue equation. Invariant lines of a transformation are parallel to eigenvectors. To find the eigenvectors and corresponding eigenvalues of a given matrix A,

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v} \implies \mathbf{A}\mathbf{v} = \lambda\mathbf{I}\mathbf{v}$$

$$\implies (\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$$

where I is the identity matrix. For this to be true for a non-zero v, $(\mathbf{A} - \lambda \mathbf{I})$ must be singular, i.e.

 $\det(A-\lambda I)=0.$

This is the **characteristic equation** of **A** and is a polynomial in λ . The roots are the eigenvalues of **A**. The respective eigenvectors can then be found by plugging each root λ back into the equation.

Example: Find the eigenvalues and eigenvectors of
$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix}$$

Find and solve the characteristic equation to	$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 0 - \lambda & 1 \\ -2 & -3 - \lambda \end{vmatrix}$ $= (-\lambda)(-3 - \lambda) - (-2)(1) = \lambda^2 + 3\lambda + 2 = 0 \Longrightarrow \lambda = -1, -2$
obtain the eigenvalues	$= (x)(3 x) (2)(1) = x + 3x + 2 = 0 \implies x = -1, 2$
Find the eigenvector for	When $\lambda = -1$,
λ_1 . Any multiple of this vector is also an	$\mathbf{A}\mathbf{v} = \lambda \mathbf{v} \Longrightarrow \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = - \begin{pmatrix} x \\ y \end{pmatrix}$
eigenvector.	Equating the top and bottom elements from either side
	$0x + y = -x \implies x + y = 0$ $-2x - 3y = -y \implies 2x + 2y = 0$
	Both equations give the same information and accept any solution if
	$y = -x \therefore \mathbf{v} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ is an acceptable eigenvector.
Find the eigenvector for	When $\lambda = -2$,
λ_2 . Any multiple of this vector is also an	$\mathbf{A}\mathbf{v} = \lambda \mathbf{v} \Longrightarrow \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = -2 \begin{pmatrix} x \\ y \end{pmatrix}$
eigenvector.	Equating the top and bottom elements from either side
_	0x + y = -2x x + y = 0
	$-2x - 3y = -2y \Longrightarrow 2x + y = 0$
	Both equations give the same information and accept any solution if
	$y = -2x \therefore \mathbf{v} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ is an acceptable eigenvector.

If **A** were a 3×3 matrix, the characteristic equation would be a cubic equation and there would be up to 3 eigenvalues and eigenvectors. A normalised eigenvector is an eigenvector of length 1. If **v** is an eigenvector, its normalised vector is given by $\hat{\mathbf{v}} = \frac{\mathbf{v}}{|\mathbf{v}|'}$, where $|\mathbf{v}|$ is the length of **v**.

Diagonalisation

A square matrix is **diagonal** if all elements that are not on its **leading diagonal** are zero. The leading diagonal is the line of elements from the top left to bottom right of a square matrix.

$\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$	$\begin{pmatrix} -7 & 0 & 0 \\ 0 & e^{\pi i} & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 9 \\ 0 & 4 & 0 \\ 1 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 6 & 0 \end{pmatrix}$
Diagonal	Diagonal	Not Diagonal (The leading diagonal is not the only collection of non-zero elements)	Not Diagonal (The leading diagonal is not filled in)

Most square matrices can be transformed into a diagonal matrix. This process is called diagonalisation. The diagonal entries of this matrix are the eigenvalues of the original matrix. (1 2 0)

Example: Diagonalise
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \\ 2 & -4 & 2 \end{pmatrix}$$
 into a diagonal matrix \mathbf{D} , such that $\mathbf{D} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$, where \mathbf{P} is to be found.

Find and solve the
characteristic
equation to obtain
the eigenvalues.
Find the eigenvector
for
$$\lambda_1$$
.
Find the eigenvector
for λ_2 .
Find the eigenvector
for λ_3 .
Find the eigenvector
for λ_2 .
Find the eigenvector
for λ_3 .
Find the eigenvector
for λ_2 .
Find the eigenvector
for λ_2 .
Find the eigenvector
for λ_3 .
Find the eigenvector
for λ

There is a relationship between any A, P and D in general:

 $\mathbf{D} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}.$

If $\mathbf{A} = \mathbf{A}^{T}$, its entries are a reflection along the leading diagonal. Such a matrix is called symmetric, and its normalised eigenvectors are always orthogonal to each other. A matrix made of orthogonal vectors is called an orthogonal matrix. Orthogonal matrices have the property that **their transpose is their inverse** and vice versa. In this case, **orthogonal** diagonalisation is used.

If **A** is a symmetric matrix, $\mathbf{D} = \mathbf{P}^T \mathbf{A} \mathbf{P}$ since if **A** is symmetric, **P** is orthogonal. Hence, $\mathbf{P}^T = \mathbf{P}^{-1}$.

www.pmt.education <a>D© PMTEducation

Example: Diagonalise A	
$\mathbf{P}^{-1}\mathbf{A}\mathbf{P}$.	

Find and solve the	
characteristic	= (3
equation to obtain	- (3
the eigenvalues.	
Since A is	Whe
symmetric, use	
orthogonal	
diagonalisation.	Equa
Find the normalised	
eigenvector for λ_1 .	
	Thes
Find the normalised	Whe
eigenvector for λ_2 .	
0 2	
	Equa
	Thes
P is the matrix of	
normalised	
eigenvectors, and D	
is the diagonal	
matrix of	
eigenvalues, as	
before.	

If

Cayley-Hamilton Theorem

4y.

This theorem states that every square matrix **A** is a solution to its own characteristic equation. Plugging a matrix into a polynomial feels unnatural, but it works by considering I as 1.

Example: Verify the Cayle

Find the	det(A
characteristic	uctifi
equation of A.	
Use the Cayley-	
Hamilton	
Theorem.	
Rearrange for	
A ⁻¹ .	

Edexcel FP2

= 1.5

$$\begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}$$
 by finding a matrix **P** and diagonal matrix **D** such that **D** =

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} \mathbf{3} - \lambda & 2\\ 2 & \mathbf{3} - \lambda \end{vmatrix}$$
$$-\lambda)^2 - 2^2 = -\lambda^2 - 6\lambda + 5 = 0 = (\lambda - 1)(5 - \lambda) = 0 \Longrightarrow \lambda$$

$$\ln \lambda = 1$$

$$\mathbf{Av} = \lambda \mathbf{v} \Longrightarrow \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

iting elements from either side,
$$3x + 2y = x \\ 2x + 3y = y \Longrightarrow x + y = 0$$

e equations accept any solution if $y = -x$, $\therefore \mathbf{v} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
 $\therefore \hat{\mathbf{v}} = \frac{1}{\sqrt{1^2 + (-1)^2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}$

 $en \lambda = 5$,

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v} \Longrightarrow \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \mathbf{5} \begin{pmatrix} x \\ y \end{pmatrix}$$

ting elements from either side,
$$3x + 2y = 5x \\ 2x + 3y = 5y \Longrightarrow \begin{array}{c} -x + y = 0 \\ x - y = 0 \end{array}$$

e equations accept any solution if $y = x, \therefore \mathbf{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
$$\therefore \hat{\mathbf{v}} = \frac{1}{\sqrt{1^2 + 1^2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}$$

$$\mathbf{P} = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}, \qquad \mathbf{D} = \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix}$$

Diagonal matrices are easier to perform long calculations with. For any diagonal $k \times k$ matrix **D**,

$$\mathbf{F}\mathbf{D} = \begin{pmatrix} a_1 & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & a_k \end{pmatrix}, \quad \mathbf{D}^n = \begin{pmatrix} a_1^n & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & a_k^n \end{pmatrix}$$

Ey-Hamilton Theorem on
$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix}$$
 and use it to find its inverse.
 $\mathbf{A} - \lambda \mathbf{I} = \begin{vmatrix} 0 - \lambda & 1 \\ -2 & -3 - \lambda \end{vmatrix} = 0 = \lambda(\lambda + 3) + 2 = \lambda^2 + 3\lambda + 2 = 0$
 $\mathbf{A}^2 + 3\mathbf{A} + 2\mathbf{I} = \mathbf{0} \xrightarrow{\text{Multiply by } \mathbf{A}^{-1}} \mathbf{A} + 3\mathbf{I} + 2\mathbf{A}^{-1} = \mathbf{0}$
 $\mathbf{A}^{-1} = -\frac{1}{2}\mathbf{A} - \frac{3}{2}\mathbf{I} = -\frac{1}{2}\begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} - \frac{3}{2}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -3/2 & -1/2 \\ 1 & 0 \end{pmatrix}$

