## **Complex Numbers Cheat Sheet**

#### Loci in the complex plane

As seen previously, an Argand diagram is a graph where the x-axis represents the real numbers and the yaxis represents the imaginary numbers. We can use complex numbers to describe a locus of points on an Argand diagram.

0

 $z_2 = x_2 + iy_2$ 

 $z_1 = x_1 + iy_1$ 

Re

Given a complex number  $z_1 = x_1 + iy_1$ :

- The locus of points z on an Argand diagram such that  $|z z_1| =$ r, is a circle centred at  $(x_1, y_1)$  with radius r. You should already know that the Cartesian equation of a circle is  $(x - x_1)^2$  +  $(y - y_1)^2$
- The locus of points z on an Argand diagram such that  $\arg(z - z_1) = \theta$ . is a half-line from (but not including) the fixed point  $z_1$ . The open circle should be plotted at  $z_1$  on an Argand diagram, making an angle  $\theta$  with the real axis.

Given two complex numbers  $z_1 = x_1 + iy_1$  and  $z_2 = x_2 + iy_2$ :

The locus of points z on an Argand diagram such that  $|z - z_1| =$  $|z - z_2|$  is the perpendicular bisector of the line segment joining  $z_1$  and  $z_2$ .

You also need to be able to find the locus of a set of points whose distances from two fixed points are in a constant ratio. Although not intuitive, the

locus of these points is a circle most of the time, which can be shown by forming an equation. For example, the locus points that are twice the distance from 1 as they are from 4 + 5i can be written as |z - 1| = 2|z - (4 + 5i)|. This can be rearranged into Cartesian form to find the centre and radius of the circle.

The locus of points z that satisfy |z - a| = k|z - b|, where  $a, b \in \mathbb{C}$  and  $k \in \mathbb{R}$ , k > 0,  $k \neq 1$  is a circle. When k = 1, the locus is a perpendicular bisector.

Circle theorems can also be used to determine more complex loci:

• The locus of points z that satisfy  $\arg\left(\frac{z-a}{z-b}\right) = \theta$ , with  $\theta \in \mathbb{R}, \theta > 0$  and  $a, b \in \mathbb{C}$ , is an arc of a circle with endpoints at the points of the complex number a, b. Again, these endpoints aren't included in the locus.

Recall from previous complex number work that  $\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)$ , so  $\arg\left(\frac{z-a}{z-b}\right) = \arg(z-a) - \arg(z-a)$  $\arg(z-b) = \theta$ . From circle theorems, we know that any point that satisfies this equation must lie on a circle, therefore the locus is the arc of a circle drawn anticlockwise from *a* to *b*.

- If  $\theta < \frac{\pi}{2}$ , then the locus is a major arc of the circle (covers over half of the circumference)
- If  $\theta > \frac{\pi}{2}$ , then the locus is a minor arc of the circle
- If  $\theta = \frac{\pi}{2}$ , then the locus is a semicircle

The Cartesian equation of the circle can be found both geometrically, using circle theorems and other angle rules, or algebraically

**Example 1:** Given that  $\arg\left(\frac{z-3}{z-2}\right) = \frac{\pi}{2}$ , find, using an algebraic method, the Cartesian equation for the locus of P(x, y) which is represented by z on an Argand diagram.

| Substitute $z = x + iy$ , as we are looking at the equation algebraically, we only need to consider the real and imaginary parts.                                                      | $\frac{z-3}{z-2} = \frac{x-3+iy}{x-2+iy}$                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Realise the denominator by multiplying the numerator and denominator by $(x - 2 + iy)^*$ .                                                                                             | $=\frac{(x-3+iy)(x-2-iy)}{(x-2+iy)(x-2-iy)}$ $=\frac{x^2-2x-iyx-3x+6+3iy+iyx-2iy+y^2}{x^2-2x-iyx-2x+4+2iy+iyx-2iy+y^2}$ $=\frac{x^2-5x+6+y^2+iy}{x^2-4x+4+y^2}$                                                               |
| Complete the square on the denominator and separate the real and imaginary parts.                                                                                                      | $=\frac{x^2 - 5x + 6 + y^2}{(x - 2)^2 + y^2} + (\frac{y}{(x - 2)^2 + y^2})i$<br>So, as given by the question,<br>$\arg\left(\frac{x^2 - 5x + 6 + y^2}{(x - 2)^2 + y^2} + (\frac{y}{(x - 2)^2 + y^2})i\right) = \frac{\pi}{3}$ |
| If $\arg z = \theta$ , then $\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)} = \tan \theta$ . (Imagine plotting                                                                      | $\tan\frac{\pi}{2} = \sqrt{3}$                                                                                                                                                                                                |
| the point <i>z</i> on an Argand diagram- the angle that is<br>made by the half-line from the origin and the real<br>line is the argument and can be calculated using<br>trigonometry). | $\tan \frac{\pi}{3} = \sqrt{3}$ $\frac{y}{(x-2)^2 + y^2} = \frac{x^2 - 5x + 6 + y^2}{(x-2)^2 + y^2} (\sqrt{3})$ $\Rightarrow y = \sqrt{3}(x^2 - 5x + 6 + y^2)$                                                                |



 $(x-\frac{5}{2})^2 + (y-\frac{\sqrt{3}}{2})^2$ We have calculated the equation of the entire circle  $(x - \frac{3}{2})^2 + (y - \frac{\sqrt{3}}{6})^2 =$ that the locus is on, but now we must use geometric. consideration to work out what part of the circle we Where v > 0, since the locus is the major part of the are looking for circle that lies above the real axis since  $\theta^{\frac{\pi}{2}}$ 

### **Regions in an Argand diagram**

Inequalities can be used to define regions in an Argand diagram:

• The inequality  $\theta_1 \leq \arg(z - z_1) \leq \theta_2$  represents a region in an Argand diagram that is enclosed by the two half-lines defined by  $\arg(z - z_1) = \theta_1$  and  $\arg(z - z_1) = \theta_2$ . As the inequalities includes the  $\leq \geq 1$ signs, the half lines are included in the diagram, and represented by a solid line. If the >, < signs are included, then the respective half line is not included and is represented by a dotted line.

**Example 2:** Sketch the region represented by the inequality  $\frac{-\pi}{4} \leq \arg(z - (3 + 4i) < 0)$ .





These regions can also be defined using set notation, and using different specifications, such as the modulus (which would give a region of a circle)

#### **Transformations of the Complex Plane**

Transformations can take the simple loci that we have explored from one complex plane (the z-plane) to another (the *w*-plane). The transformation will be defined by a function relating z = x + iy to w = u + iv and will map points from the z-plane to the w-plane. You should be able to recognise the formulae for translations, enlargements, and rotations.

- w = z + a + ib represents a translation by the vector  $\binom{a}{b}$ , where  $a, b \in \mathbb{R}$
- $w = kz, k \in \mathbb{R}$ , represents an enlargement of scale factor k with centre (0,0)
- $w = e^{i\theta}z$  represents an anticlockwise rotation about the origin of angle  $\theta$ .

You should also be able to recognise compound transformations, for example the transformation formula w = iz + iz3-i represents an anticlockwise rotation through  $\frac{\pi}{2}$  about the origin followed by a translation by the vector  $\begin{pmatrix} 3\\4 \end{pmatrix}$ .

**Example 3:** A transformation from the z-plane to the w-plane is given by w = 3z + 2 + 3i. Describe the locus of w and give its Cartesian equation when z lies on the circle with Cartesian equation  $x^2 + y^2 = 25$ .

| Recognise that $w = 3z$ represents an enlargement of scale factor 3. The circle now has a radius with value 15. | $u^2 + v^2 = 225$         |
|-----------------------------------------------------------------------------------------------------------------|---------------------------|
| $w = z + 2 + 3i$ represents a translation by the vector $\binom{2}{3}$ .                                        | $(u-2)^2 + (v-3)^2 = 225$ |

It is important to note that in the z-plane the Cartesian form will use the variables x, y and in the w-plane it will be in terms of u and v

There is another type of transformation that you should know, called a Möbius transformation, which are of the form,  $w = \frac{az+b}{cz+d}$ ,  $a, b, c, d \in \mathbb{C}$ .

 $\bigcirc$ 



Take the modulus of each Use the expression  $\left|\frac{z_1}{z_1}\right| =$ |z| = 1.

Using the previous work or locus of points  $|z - z_1| =$ perpendicular bisector of t points  $z_1$  and  $z_2$ .

**Example 5:** A transformation T of the z-plane to the w-plane is given by  $w = \frac{2iz-4i}{1+z}$ ,  $z \neq -1$ . If z lies on the imaginary axis, find the image on the w-plane.

Rearrange the transformation the subject of the equation

Rewrite w as u + iv.

Realise the denominator (m and denominator by the con denominator).

Group together the real and

Rewrite z as x + iy and equal imaginary parts

| Rewrite z as $x + iy$ and gro parts.                                                                                   |
|------------------------------------------------------------------------------------------------------------------------|
| Recall that $ z  = \sqrt{x^2 + y^2}$ ,<br>sides and then remove the remove the remoted to square as you we<br>example. |
| Expand the brackets and sin                                                                                            |
| Complete the square.                                                                                                   |

Rearrange into the standard



# **Edexcel A Level Further Maths: FP2**

**Example 4:** A transformation from the *z*-plane, where z = x + iy, to the *w*-plane, where w = u + iv, is given by  $w = \frac{4iz+3i}{z-1}$ ,  $z \neq 1$ . Find the image of the z-plane circle |z| = 1 in the w-plane.

| on equation to make <i>z</i> the          | $w = \frac{4iz + 3i}{z - 1} \Rightarrow w(z - 1) = 4iz + 3i$ $\Rightarrow wz - w = 4iz + 3i \Rightarrow wz - 4iz = 3i + w$ |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|                                           | $\Rightarrow z(w-4i) = 3i + w \Rightarrow z = \frac{3i + w}{w - 4i}$                                                       |
| side of the equation.                     | $ z  = \left \frac{3i+w}{w+4i}\right $                                                                                     |
| $\frac{ z_1 }{ z_2 }$ , and the fact that | $1 = \frac{ 3i+w }{ w+4i }$                                                                                                |
|                                           | w+4i  =  w+3i                                                                                                              |
| on loci, we know that the                 | The locus of points satisfying $ w + 4i  =  w + 3i $                                                                       |
| $ z-z_2 $ is the                          | is the perpendicular bisector of the points                                                                                |
| the line connecting the                   | connecting $-4i$ and $-3i$ , namely the line $v = -3.5$ .                                                                  |

| on equation to make <i>z</i>                  | $w = \frac{2iz - 4i}{1 + z} \Rightarrow w(1 + z) = 2iz - 4i$ $\Rightarrow w + wz = 2iz - 4i \Rightarrow wz - 2iz = -w - 4i$ $\Rightarrow z(w - 2i) = -w - 4i \Rightarrow z = \frac{-w - 4i}{w - 2i}$                                                 |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                               | $\Rightarrow z(w - 2i) = -w - 4i \Rightarrow z = \frac{-w - 4i}{w - 2i}$ $z = \frac{-u - iv - 4i}{u + iv - 2i} \Rightarrow z = \frac{-u - (v + 4)i}{u + (v - 2)i}$ $z = \frac{-u - (v + 4)i}{u + (v - 2)i} \times \frac{u - (v - 2)i}{u - (v - 2)i}$ |
| nultiply the numerator mplex conjugate of the | $z = \frac{-u - (v + 4)i}{u + (v - 2)i} \times \frac{u - (v - 2)i}{u - (v - 2)i}$                                                                                                                                                                    |
|                                               | $z = \frac{-u^2 + (vu - 2u)i - (vu + 4u)i - (v^2 + 2v - 8)}{u^2 - (vu - 2u)i + (vu - 2u)i + (v^2 - 4v + 4)}$ $z = \frac{-u^2 - 6ui - v^2 - 2v + 8}{u^2 + v^2 - 4v + 4}$                                                                              |
| d imaginary parts.                            | $z = \frac{-u^2 - (v+4)(v-2)}{u^2 + (v-2)^2} - \left(\frac{6u}{u^2 + (v-2)^2}\right)i$                                                                                                                                                               |
| uate the real and                             | z = x + iy                                                                                                                                                                                                                                           |
|                                               | As z lies on the imaginary axis, $x = 0$ ,                                                                                                                                                                                                           |
|                                               | $0 + yi = \frac{-u^2 - (v+4)(v-2)}{u^2 + (v-2)^2} - \left(\frac{6u}{u^2 + (v-2)^2}\right)i$ $\Rightarrow 0 = \frac{-u^2 - (v+4)(v-2)}{u^2 + (v-2)^2}$                                                                                                |
|                                               | $\Rightarrow -u^{2} - (v+4)(v-2) = 0 \Rightarrow u^{2} + v^{2} + 2v = 8$                                                                                                                                                                             |
|                                               | So the image lies on the circle with equation $u^2 + v^2 +$                                                                                                                                                                                          |
|                                               | 2v = 8.                                                                                                                                                                                                                                              |

#### **Example 6:** Deduce the Cartesian equation of the curve 2|z + 3| = |z - 3|.

| up the real and imaginary                                                  | 2 x + iy + 3  =  x + iy - 3 <br>2 (x + 3) + iy  =  (x - 3) + iy                                                                                                                                                                                              |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| so we can square both<br>modulus sign- don't be<br>yould $(x + y)^2$ , for | $2^{2}((x+3)^{2} + y^{2}) = (x-3)^{2} + y^{2}$                                                                                                                                                                                                               |
| nplify.                                                                    | $4(x^{2} + 6x + 9 + y^{2}) = x^{2} - 6x + 9 + y^{2}$<br>$\Rightarrow 4x^{2} + 24x + 36 + 4y^{2} = x^{2} - 6x + 9 + y^{2}$<br>$\Rightarrow 3x^{2} + 30x + 3y^{2} + 27 = 0$<br>$\Rightarrow x^{2} + 10x + y^{2} + 9 = 0$<br>$(x + 5)^{2} - 25 + y^{2} + 9 = 0$ |
| d equation of a circle.                                                    | $(x + 5)^2 + y^2 = 16$<br>So the locus is a circle of radius 4 centred at (-5,0)                                                                                                                                                                             |

