Conic Sections 1

Questions

Q1.

The rectangular hyperbola H has parametric equations

$$x = 4t$$
, $y = \frac{4}{t}$ $t \neq 0$

The points *P* and *Q* on this hyperbola have parameters $t = \frac{1}{4}$ and t = 2 respectively.

The line / passes through the origin O and is perpendicular to the line PQ.

(a) Find an equation for *I*.

(3)

(1)

- (b) Find a cartesian equation for *H*.
- (c) Find the exact coordinates of the two points where *I* intersects *H*. Give your answers in their simplest form.

(3)

(Total for question = 7 marks)

Q2.

The parabola *C* has equation $y^2 = 4ax$, where *a* is a constant and a > 0The point $Q(aq^2, 2aq)$, q > 0, lies on the parabola *C*.

(a) Show that an equation of the tangent to C at Q is

$$qy = x + aq^2$$

(4)

(4)

The tangent to *C* at the point *Q* meets the *x*-axis at the point $X\left(-\frac{1}{4}a,0\right)$ and meets the directrix of *C* at the point *D*.

(b) Find, in terms of *a*, the coordinates of *D*.

Given that the point F is the focus of the parabola C,

(c) find the area, in terms of *a*, of the triangle *FXD*, giving your answer in its simplest form.

(2) (Total for question = 10 marks) Q3.

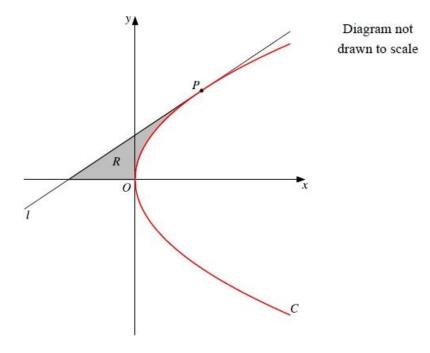


Figure 2

You may quote without proof that for the general parabola $y^2 = 4ax$, $\frac{dy}{dx} = \frac{2a}{y}$

The parabola *C* has equation $y^2 = 16x$.

(a) Deduce that the point $P(4p^2, 8p)$ is a general point on *C*.

(1)

The line / is the tangent to C at the point P.

(b) Show that an equation for *I* is

$$py = x + 4 p^2$$

(3)

10

The finite region *R*, shown shaded in Figure 2, is bounded by the line *I*, the *x*-axis and the parabola *C*.

The line / intersects the directrix of C at the point B, where the y coordinate of B is $\overline{3}$

Given that p > 0

(c) show that the area of R is 36

(8)

(Total for question = 12 marks)

Q4.

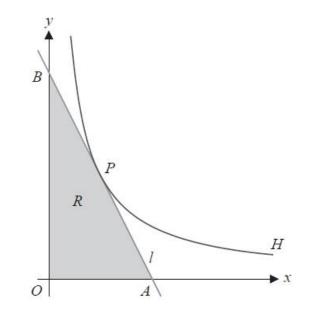


Figure 2 shows a sketch of part of the rectangular hyperbola H with equation

 $xy = c^2 \qquad x > 0$

where *c* is a positive constant.

The point $P^{\left(ct, \frac{c}{t}\right)}$ lies on *H*.

The line / is the tangent to H at the point P.

The line / crosses the x-axis at the point A and crosses the y-axis at the point B.

The region *R*, shown shaded in Figure 2, is bounded by the *x*-axis, the *y*-axis and the line *l*.

Given that the length OB is twice the length of OA, where O is the origin, and that the area of R is 32, find the exact coordinates of the point P.

(Total for question = 10 marks)

Q5.

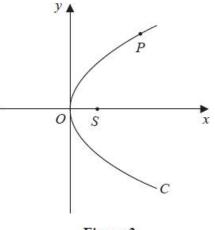


Figure 2

Figure 2 shows a sketch of the parabola *C* with equation $y^2 = 4ax$, where a is a positive constant. The point *S* is the focus of *C* and the point *P*(ap^2 , 2ap) lies on *C* where p > 0

(a) Write down the coordinates of S.

(b) Write down the length of *SP* in terms of *a* and *p*.

The point $Q(aq^2, 2aq)$, where $p \neq q$, also lies on *C*. The point *M* is the midpoint of *PQ*.

Given that pq = -1

(c) prove that, as *P* varies, the locus of *M* has equation

$$y^2 = 2a(x-a)$$

(5)

(Total for question = 7 marks)

(1)

(1)

PhysicsAndMathsTutor.com

Q6.

The point $P(ap^2, 2ap)$, where a is a positive constant, lies on the parabola with equation

$$y^2 = 4ax$$

The normal to the parabola at *P* meets the parabola again at the point $Q(aq^2, 2aq)$

(a) Show that

$$q = \frac{-p^2 - 2}{p}$$

(5)

(b) Hence show that

$$PQ^{2} = \frac{ka^{2}}{p^{4}} (p^{2} + 1)^{n}$$

where *k* and *n* are integers to be determined.

(5)

(Total for question = 10 marks)

Q7.

The parabola *C* has equation $y^2 = 10x$

The point F is the focus of C.

(a) Write down the coordinates of F.

The point *P* on *C* has *y* coordinate *q*, where q > 0

(b) Show that an equation for the tangent to C at P is given by

$$10x - 2qy + q2 = 0$$

(3)

(1)

The tangent to C at P intersects the directrix of C at the point A.

The point *B* lies on the directrix such that *PB* is parallel to the *x*-axis.

(c) Show that the point of intersection of the diagonals of quadrilateral *PBAF* always lies on the *y*-axis.

(5) (Total for question = 9 marks)

Q8.

The rectangular hyperbola H has equation xy = 36

(a) Use calculus to show that the equation of the tangent to *H* at the point $P^{\left(6t, \frac{6}{t}\right)}$ is

$$yt^2 + x = 12t$$

The point $Q^{\left(12t, \frac{3}{t}\right)}$ also lies on *H*.

(b) Find the equation of the tangent to H at the point Q.

(2)

(3)

The tangent at P and the tangent at Q meet at the point R.

(c) Show that as t varies the locus of R is also a rectangular hyperbola.

(4)

(Total for question = 9 marks)

Q9.

The normal to the parabola $y^2 = 4ax$ at the point $P(ap^2, 2ap)$ passes through the

parabola again at the point $Q(aq^2, 2aq)$.

The line OP is perpendicular to the line OQ, where O is the origin.

Prove that $p^2 = 2$

(9)

(Total for question = 9 marks)

Mark Scheme – Conic Sections 1

Q1.

Question Number	Scheme		Marks
(a)	$x = 4t, y = \frac{4}{t}, t \neq 0$ $t = \frac{1}{4} \Rightarrow P(1, 16), t = 2 \Rightarrow Q(8, 2)$ $m(PQ) = \frac{2-16}{8-1} \{= -2\}$ $m(l) = \frac{1}{2}$	Coordinates for either <i>P</i> or <i>Q</i> are correctly stated. (Can be implied). Finds the gradient of the chord <i>PQ</i> with $\frac{y_2 - y_1}{x_2 - x_1}$ then uses in $y = -\frac{1}{m}x$. Condone incorrect sign of gradient.	B1 M1
	So, $l: y = \frac{1}{2}x$ or $2y = x$	$y = \frac{1}{2}x \text{or} 2y = x$	
(b)	$xy = 16$ or $y = \frac{16}{x}$ or $x = \frac{16}{y}$	Correct Cartesian equation. Accept $\frac{4}{y} = \frac{x}{4} \text{ or } xy = 4^2$	[3] B1 oe
(c)	Way 1 Way 2 Way 3 $\frac{1}{2}x = \frac{16}{x}$ $\frac{4}{t} = \frac{1}{2}(4t)$ $2y = \frac{16}{y}$ $\{x^2 = 32\}$ $\{t^2 = 2\}$ $\{y^2 = 8\}$	Attempts to substitute their <i>l</i> into either their Cartesian equation or parametric equations of <i>H</i>	[1] M1
	$(4\sqrt{2}, 2\sqrt{2}), (-4\sqrt{2}, -2\sqrt{2})$	At least one set of coordinates (simplified or un-simplified) or $x = \pm 4\sqrt{2}$, $y = \pm 2\sqrt{2}$	A1
		Both sets of simplified coordinates. Accept written in pairs as $x = 4\sqrt{2}$, $y = 2\sqrt{2}$ $x = -4\sqrt{2}$, $y = -2\sqrt{2}$	A1
			[3] 7

Q2.	
-----	--

Question Number	Scheme		Marks
INUMIOCI	$y^2 = 4ax$, at $Q(aq^2, 2aq)$		2
(a)	$y = 2\sqrt{a}x^{\frac{1}{2}} \Rightarrow \frac{dy}{dx} = \sqrt{a}x^{-\frac{1}{2}} \text{ or } 2y\frac{dy}{dx} = 4a \text{ or } \frac{dy}{dx} = 2a \times \frac{1}{2aq}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm k x^{-\frac{1}{2}} \text{ or } k y \frac{\mathrm{d}y}{\mathrm{d}x} = c \text{ or }$	M1
		their $\frac{dy}{dq}$	
		their $\frac{dx}{dq}$	
	When $x = aq^2$, $m_r = \frac{dy}{dx} = \frac{\sqrt{a}}{\sqrt{aq^2}} = \frac{\sqrt{a}}{\sqrt{aq}} = \frac{1}{q}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{q}$	A1
	or when $y = 2aq$, $m_T = \frac{dy}{dx} = \frac{4a}{2(2aq)} = \frac{1}{q}$		
	$\mathbf{T}: \ y - 2aq = \frac{1}{a} \left(x - aq^2 \right)$	Applies	dM1
	$1. y 2uq = \frac{q}{q} \left(x uq \right)$	$y - 2aq = (\text{their } m_T)(x - aq^2)$	
		or $y = (\text{their } m_T)x + c$ and an	
	o	attempt to find <i>c</i> with gradient from calculus.	
	$\mathbf{T}: \ qy - 2aq^2 = x - aq^2$		
	T : $qy = x + aq^{2*}$	CS0	A1 *
(b)	$X\left(-\tfrac{1}{4}a,0\right) \Longrightarrow 0 = -\tfrac{1}{4}a + aq^2$	Substitutes $x = -\frac{1}{4}a$ and $y = 0$ into T	[4] M1
	$\Rightarrow \left\{ q^2 = \frac{1}{4} \Rightarrow q = -\frac{1}{2} \text{ (reject)} \right\} q = \frac{1}{2}$	$q = \frac{1}{2} \text{ oe}$	A1
		Substitutes their " $q = \frac{1}{2}$ " and	M1
	So, $\frac{1}{2}y = -a + a\left(\frac{1}{2}\right)^2$	x = -a in T or finds	
		$y_D = \frac{1}{q} \left(-a + aq^2 \right)$	
	giving, $y = -\frac{3a}{2}$. So $D(-a, -\frac{3}{2}a)$ o.e.	$D(-a,-\frac{3}{2}a)$ o.e.	A1
20245	4		[4]
(c)	(form F(= 0))		(1)20
Way 1	$\{\text{focus } F(a, 0)\}$	Applies	M1
Way 1	Area(FXD) = $\frac{1}{2} \left(\frac{5a}{4} \right) \left(\frac{3a}{2} \right) = \frac{15a^2}{16}$	Applies $\frac{1}{2}$ (their $ FX $)(their $ y_D $).	IVII
		2	
		If their $y_D = \frac{1}{q}(-a + aq^2)$ then	
		require an attempt to sub for q to	
		award M. $\frac{15a^2}{15}$ or $0.9375a^2$	A1 cso
		16	[2]

$$\begin{array}{c|c} (c) \\ Way 2 \\ Way 2 \\ Way 2 \\ (c) \\ Way 3 \\ (c) \\ Way 3 \\ (c) \\ Way 4 \\ (c) \\$$

0	Question Notes	
(c) Way 1	Do not award M1 if area of wrong triangle found e.g. $\frac{1}{2} \cdot 2a \cdot \frac{3a}{2} = \frac{3a^2}{2}$	

Q3.

Question	Scheme	Marks	AOs
(a)	$y^2 = (8p)^2 = 64p^2$ and $16x = 16(4p^2) = 64p^2$ $\Rightarrow P(4p^2, 8p)$ is a general point on <i>C</i>	B1	2.2a
		(1)	
(b)	$y^2 = 16x$ gives $a = 4$, or $2y\frac{dy}{dx} = 16$ so $\frac{dy}{dx} = \frac{8}{y}$	M1	2.2a
	$l: y - 8p = \left(\frac{8}{8p}\right) \left(x - 4p^2\right)$	M1	1.1b
	leading to $py = x + 4p^2 *$	A1*	2.1
		(3)	
(c)	$B\left(-4,\frac{10}{3}\right)$ into $l \Rightarrow \frac{10p}{3} = -4 + 4p^2$	M1	3.1a
	$6p^2 - 5p - 6 = 0 \implies (2p - 3)(3p + 2) = 0 \implies p = \dots$	M1	1.1b
	$p = \frac{3}{2}$ and l cuts x-axis when $\frac{3}{2}(0) = x + 4\left(\frac{3}{2}\right)^2 \Rightarrow x = \dots$	M1	2.1
	x = -9	A1	1.1b
	$p = \frac{3}{2} \Rightarrow P(9, 12) \Rightarrow \operatorname{Area}(R) = \frac{1}{2}(99)(12) - \int_{0}^{9} 4x^{\frac{1}{2}} dx$	M1	2.1
	$\frac{1}{4x^2}$ 8 ³ / ₂	M1	1.1b
	$\int 4x^{\frac{1}{2}} dx = \frac{4x^{\frac{2}{2}}}{\left(\frac{3}{2}\right)} (+c) \text{ or } \frac{8}{3}x^{\frac{3}{2}} (+c)$	A1	1.1b
	Area(R) = $\frac{1}{2}(18)(12) - \frac{8}{3}\left(9^{\frac{3}{2}} - 0\right) = 108 - 72 = 36 *$	A1*	1.1b
	00.01 20.04	(8)	

(c) ALT 1	$B\left(-4,\frac{10}{3}\right)$ into $l \Rightarrow \frac{10p}{3} = -4 + 4p^2$	M1	3.1a
	$6p^2 - 5p - 6 = 0 \implies (2p - 3)(3p + 2) = 0 \implies p = \dots$	M1	1.1b
	$p = \frac{3}{2}$ into <i>l</i> gives $\frac{3}{2}y = x + 4\left(\frac{3}{2}\right)^2 \implies x = \dots$	M1	2.1
	$x = \frac{3}{2}y - 9$	A1	1.1b
	$p = \frac{3}{2} \Rightarrow P(9, 12) \Rightarrow \operatorname{Area}(R) = \int_{0}^{12} \left(\frac{1}{16}y^{2} - \left(\frac{3}{2}y - 9\right)\right) dy$	M1	2.1
	$\int \left(\frac{1}{16}y^2 - \frac{3}{2}y + 9\right) dy = \frac{1}{48}y^3 - \frac{3}{4}y^2 + 9y \ (+c)$	M1	1.1b
	$\int (16^{5} 2^{5})^{45} 48^{5} 4^{5} 4^{5} (10^{5})^{45}$	A1	1.1b
	Area(R) = $\left(\frac{1}{48}(12)^3 - \frac{3}{4}(12)^2 + 9(12)\right) - (0)$ = 36 - 108 + 108 = 36 *	A1*	1.1b
() ()	- 50 - 100 + 100 - 50	(8)	

Question	Scheme	Marks	AOs
(c) ALT 2	$B\left(-4,\frac{10}{3}\right)$ into $l \Rightarrow \frac{10p}{3} = -4 + 4p^2$	M1	3.1a
	$6p^2 - 5p - 6 = 0 \implies (2p - 3)(3p + 2) = 0 \implies p = \dots$	M1	1.1b
	$p = \frac{3}{2}$ and l cuts x-axis when $\frac{3}{2}(0) = x + 4\left(\frac{3}{2}\right)^2 \Rightarrow x = \dots$	M1	2.1
	<i>x</i> = -9	A1	1.1b
	$p = \frac{3}{2} \Rightarrow P(9, 12) \text{ and } x = 0 \text{ in } l : y = \frac{2}{3}x + 6 \text{ gives } y = 6$ $\Rightarrow \operatorname{Area}(R) = \frac{1}{2}(9)(6) + \int_0^9 \left(\left(\frac{2}{3}x + 6\right) - \left(\frac{4x^{\frac{1}{2}}}{2}\right) \right) dx$	M1	2.1
2	$\int \left(\frac{2}{3}x+6-4x^{\frac{1}{2}}\right) dx = \frac{1}{3}x^{2}+6x-\frac{8}{3}x^{\frac{3}{2}} (+c)$	M1	1.1b
	$\int \left(\frac{-x}{3} + 0 - 4x^{2}\right) dx = \frac{-x}{3} + 0x - \frac{-x}{3} + (+c)$	A1	1.1b
	Area(R) = 27 + $\left(\left(\frac{1}{3}(9)^2 + 6(9) - \frac{8}{3}(9^{\frac{3}{2}})\right) - (0)\right)$ = 27 + (27 + 54 - 72) = 27 + 9 = 36 *	A1*	1.1b
		(8)	
2 3		(12	marks)

0	Notes	
(a)		
B1	Substitutes $y_p = 8p$ into y^2 to obtain $64p^2$ and substitutes $x_p = 4p^2$ into $16x$ to	
	obtain $64p^2$ and concludes that P lies on C.	
(b)		
M1	Uses the given formula to deduce the derivative. Alternatively, may differentiate using chain rule to deduce it.	
M1	Applies $y - 8p = m(x - 4p^2)$, with their tangent gradient <i>m</i> , which is in terms of <i>p</i> .	
	Accept use of $8p = m(4p^2) + c$ with a clear attempt to find <i>c</i> .	
A1*	Obtains $py = x + 4p^2$ by cso.	

3 	Notes Continued
(c)	
M1	Substitutes their $x = "-a"$ and $y = \frac{10}{3}$ into <i>l</i> .
M1	Obtains a 3 term quadratic and solves (using the usual rules) to give $p = \dots$
M1	Substitutes their p (which must be positive) and $y = 0$ into l and solves to give $x = \dots$
Al	Finds that <i>l</i> cuts the <i>x</i> -axis at $x = -9$
M1	Fully correct method for finding the area of R .
	i.e. $\frac{1}{2}$ (their $x_p - "-9"$)(their y_p) $- \int_0^{\text{their } x_p} 4x^{\frac{1}{2}} dx$
M1	Integrates $\pm \lambda x^{\frac{1}{2}}$ to give $\pm \mu x^{\frac{3}{2}}$, where $\lambda, \mu \neq 0$
A1	Integrates $4x^{\frac{1}{2}}$ to give $\frac{8}{3}x^{\frac{3}{2}}$, simplified or un-simplified.
A1*	Fully correct proof leading to a correct answer of 36
(c) ALT 1	
M1	Substitutes their $x = "-a"$ and $y = \frac{10}{3}$ into <i>l</i> .
M1	Obtains a 3 term quadratic and solves (using the usual rules) to give $p = \dots$
M1	Substitutes their p (which must be positive) into l and rearranges to give $x =$
A1	Finds <i>l</i> as $x = \frac{3}{2}y - 9$
M1	Fully correct method for finding the area of R .
	i.e. $\int_{0}^{\text{their } y_{p}} \left(\frac{1}{16}y^{2} - \text{their } \left(\frac{3}{2}y - 9\right)\right) dy$
M1	Integrates $\pm \lambda y^2 \pm \mu y \pm v$ to give $\pm \alpha y^3 \pm \beta y^2 \pm v y$, where $\lambda, \mu, \nu, \alpha, \beta \neq 0$
A 1	Integrates $\frac{1}{16}y^2 - \left(\frac{3}{2}y - 9\right)$ to give $\frac{1}{48}y^3 - \frac{3}{4}y^2 + 9y$, simplified or un-simplified.
A1*	Fully correct proof leading to a correct answer of 36
3	Notes Continued
(c)	Notes Continued
ALT 2	
M1	Substitutes their $x = "-a"$ and $y = \frac{10}{3}$ into <i>l</i> .
M1	Obtains a 3 term quadratic and solves (using the usual rules) to give $p = \dots$
M1	Substitutes their p (which must be positive) and $y = 0$ into l and solves to give $x = \dots$
A1	Finds that <i>l</i> cuts the <i>x</i> -axis at $x = -9$
N(1	Evilty correct method for funding the area of D

i.e.
$$\frac{1}{2}$$
 (their 9)(their 6) + $\int_{0}^{\frac{1}{2}} \left(\operatorname{their}\left(\frac{2}{3}x+6\right) - \left(\frac{4x^2}{2}\right) \right) dy$

M1 Integrates
$$\pm \lambda x \pm \mu \pm \nu x^{\overline{2}}$$
 to give $\pm \alpha x^2 \pm \mu x \pm \beta x^{\overline{2}}$, where $\lambda, \mu, \nu, \alpha, \beta \neq 0$

A1 Integrates
$$\left(\frac{2}{3}x+6\right) - \left(4x^{\frac{1}{2}}\right)$$
 to give $\frac{1}{3}x^2 + 6x - \frac{8}{3}x^{\frac{3}{2}}$, simplified or un-simplified.

A1* Fully correct proof leading to a correct answer of 36

Q4.

Question	Scheme	Marks	AOs
	$H: xy = c^2, c > 0; P\left(ct, \frac{c}{t}\right)$ lies on $H; OB = 2OA;$ Area $(OAB) = 32$		
Way 1	Either $y = \frac{c^2}{x} = c^2 x^{-1} \Rightarrow \frac{dy}{dx} = -c^2 x^{-2} \text{ or } -\frac{c^2}{x^2}$ or $xy = c^2 \Rightarrow x\frac{dy}{dx} + y = 0$ or $x = cp, y = \frac{c}{p} \Rightarrow \frac{dy}{dx} = \frac{dy}{dp} \cdot \frac{dp}{dx} = -\left(\frac{c}{p^2}\right)\left(\frac{1}{c}\right)$; condone $t \equiv p$ and so, at $P\left(ct, \frac{c}{t}\right), m_T = -\frac{1}{t^2}$	M1	3.1a
	$y - \frac{c}{t} = " - \frac{1}{t^2} "(x - ct)$	M1	1.1b
	or $\frac{c}{t} = "-\frac{1}{t^2}"(ct) + b \implies y = "-\frac{1}{t^2}"x + \text{their } b \implies y = -\frac{1}{t^2}x + \frac{2c}{t}$	A1	1.1b
	$2c \left[2c \right]$	M1	1.1b
	$y = 0 \Rightarrow x = 2ct \{ \Rightarrow x_A = 2ct \}, x = 0 \Rightarrow y = \frac{2c}{t} \{ \Rightarrow y_B = \frac{2c}{t} \}$	A1	1.1b
	$\{OB = 2OA \Rightarrow\} \frac{2c}{t} = 2(2ct) \Rightarrow t = \dots$	M1	2.1
	$\left\{t^2 = \frac{1}{2} \Rightarrow\right\} t = \frac{1}{\sqrt{2}} \text{ or } \frac{\sqrt{2}}{2} \text{ or awrt } 0.707$	A1	1.1b
	$\left\{\text{Area}\left(OAB\right) = 32 \Longrightarrow\right\} \frac{1}{2}(2ct)\left(\frac{2c}{t}\right) = 32 \implies c = \dots \{\Rightarrow c = 4\}$	M1	2.1
	Deduces the <i>numerical</i> value x_p and y_p using their values of t and c	M1	2.2a
	$P(2\sqrt{2}, 4\sqrt{2})$ or $P(\text{awrt } 2.83, \text{awrt } 5.66)$ or $x = 2\sqrt{2}$ and $y = 4\sqrt{2}$	A1	1.1b
		(10)	

Way 2	Same requirement as the 1st M mark in Way 1	M1	3.1a
	e.g. $\left\{ t = \frac{1}{\sqrt{2}} \Rightarrow P\left(\frac{c}{\sqrt{2}}, \sqrt{2}c\right) \Rightarrow \right\} y = \sqrt{2}c = -2\left(x - \frac{c}{\sqrt{2}}\right)$	M1	1.1b
	using $m_T = -2$ and their P which has been found by a correct method	A1	1.1b
	$y = 0 \Rightarrow x = \sqrt{2}c \{\Rightarrow x_A = \sqrt{2}c\}, x = 0 \Rightarrow y = 2\sqrt{2}c \{\Rightarrow y_B = 2\sqrt{2}c\}$	M1	1.1b
	$y = 0 \Rightarrow x = \sqrt{2t} \left(\Rightarrow x_A = \sqrt{2t} \right), x = 0 \Rightarrow y = 2\sqrt{2t} \left(\Rightarrow y_B = 2\sqrt{2t} \right)$	A1	1.1b
	$\{OB = 2OA \Rightarrow\}$ $m_T = -2$ and their $m_T = -\frac{1}{t^2} = -2 \Rightarrow t =$	M1	2.1
	$\left\{t^2 = \frac{1}{2} \Rightarrow\right\} t = \frac{1}{\sqrt{2}} \text{ or } \frac{\sqrt{2}}{2} \text{ or awrt } 0.707 \left\{\Rightarrow P\left(\frac{c}{\sqrt{2}}, \sqrt{2}c\right)\right\}$	A1	1.1b
	$\{\text{Area } (OAB) = 32 \Rightarrow \} \frac{1}{2}\sqrt{2}c\left(2\sqrt{2}c\right) = 32 \Rightarrow c = \dots \{\Rightarrow c = 4\}$	M1	2.1
	Deduces the <i>numerical</i> value x_p and y_p using their values of t and c	M1	2.2a
	$P(2\sqrt{2}, 4\sqrt{2})$ or $P(\text{awrt } 2.83, \text{awrt } 5.66)$ or $x = 2\sqrt{2}$ and $y = 4\sqrt{2}$	A1	1.1b
		(10)	
		(1	0 mark

Question	Scheme	Marks	AOs
	$H: xy = c^2, c > 0; P\left(ct, \frac{c}{t}\right)$ lies on $H; OB = 2OA;$ Area $(OAB) = 32$		
Way 3	Same requirement as the 1 st M mark in Way 1	M1	3.1a
	e.g. $y-8\sqrt{2}=-2(x-0)$ or $y-0=-2(x-4\sqrt{2})$	M1	1.1b
	using $m_T = -2$ and either their $A(4\sqrt{2}, 0)$ or their $B(0, 8\sqrt{2})$ which have been found by a correct method	A1	1.1b
	{Area (OAB) = 32, OB = 2OA \Rightarrow } $\frac{1}{2}(x)(2x)=32 \Rightarrow x=$	M1	2.1
	$x = 4\sqrt{2} \{ \Rightarrow x_A = 4\sqrt{2} \} \text{ or } y = 8\sqrt{2} \{ \Rightarrow y_B = 8\sqrt{2} \}$	A1	1.1b
	$\{OB = 2OA \Rightarrow\} m_T = -2 \text{ and their } m_T = -\frac{1}{t^2} = -2 \Rightarrow t = \dots$	M1	2.1
	$\left\{t^2 = \frac{1}{2} \Rightarrow\right\} \ t = \frac{1}{\sqrt{2}} \text{ or } \frac{\sqrt{2}}{2} \text{ or awrt } 0.707 \left\{\Rightarrow P\left(\frac{c}{\sqrt{2}}, \sqrt{2}c\right)\right\}$	A1	1.1b
	$\sqrt{2}c - 8\sqrt{2} = -2\left(\frac{c}{\sqrt{2}} - 0\right) \Rightarrow c = \dots \{\Rightarrow c = 4\}$	M1	1.1b
	Deduces the <i>numerical</i> value x_p and y_p using their values of t and c	M1	2.2a
	$P(2\sqrt{2}, 4\sqrt{2})$ or $P(\text{awrt } 2.83, \text{awrt } 5.66)$ or $x = 2\sqrt{2}$ and $y = 4\sqrt{2}$	A1	1.1b
	n an Alban a T	(10)	

Way 4	Complete process substituting their		
6.2940 C (1823	$y-8\sqrt{2}=-2(x-0)$ or $y-0=-2(x-4\sqrt{2})$ into $xy=c^2$	M1	3.1a
	and applying $b^2 - 4ac = 0$ to their resulting $2x^2 - 8\sqrt{2}x + c^2 = 0$		
	e.g. $y - 8\sqrt{2} = -2(x-0)$ or $y - 0 = -2(x-4\sqrt{2})$	M1	1.1b
	using $m_T = -2$ and either their $A(4\sqrt{2}, 0)$ or their $B(0, 8\sqrt{2})$ which have been found by a correct method	A1	1.1b
	{Area (OAB) = 32, $OB = 2OA \Rightarrow$ } $\frac{1}{2}(x)(2x) = 32 \Rightarrow x =$	M1	2.1
	$x = 4\sqrt{2} \ \{\Rightarrow x_A = 4\sqrt{2}\} \text{ or } y = 8\sqrt{2} \ \{\Rightarrow y_B = 8\sqrt{2}\}$	A1	1.1b
	dependent on 2 nd M mark $\{xy = c^2 \Rightarrow\} x(-2x+8\sqrt{2}) = c^2 \{\Rightarrow 2x^2 - 8\sqrt{2}x + c^2 = 0\}$	dM1	2.1
	or $\{xy = c^2 \Rightarrow\} \frac{1}{2} (8\sqrt{2} - y)y = c^2 \ \{\Rightarrow y^2 - 8\sqrt{2}y + 2c^2 = 0\}$	A1	1.1b
	$\{b^2 - 4ac = 0 \Rightarrow\} (8\sqrt{2})^2 - 4(2)(c^2) = 0 \Rightarrow c = \dots \{\Rightarrow c = 4\}$	M1	1.1b
	Deduces the <i>numerical</i> value x_p and y_p using their value of c	M1	2.2a
	$P(2\sqrt{2}, 4\sqrt{2})$ or $P(\text{awrt } 2.83, \text{awrt } 5.66)$ or $x = 2\sqrt{2}$ and $y = 4\sqrt{2}$	A1	1.1b
		(10)	
Note:	For the final M1 mark in Way 1, Way 2, Way 3 and Way 4		
	Allow final M1 for a correct method which gives any of $x_p = 2\sqrt{2}$ or $y_p = 4\sqrt{2}$ or $x_p = awrt 2.83$ or $y_p = awrt 5.66$ o.e.		

	Notes for Question
Way 1	
MI:	Establishes the gradient of the tangent by differentiating $xy = c^2$ • to give $\frac{dy}{dx} = \pm k x^{-2}$; $k \neq 0$, or • by the product rule to give $\pm x \frac{dy}{dx} \pm y$, or • by parametric differentiation to give $\left(\text{their } \frac{dy}{dt} \right) \times \frac{1}{\left(\frac{dx}{dt} \right)}$, condoning $p \equiv t$ and attempt to use $P\left(ct, \frac{c}{t}\right)$ to write down the gradient of the tangent to the curve in terms of t
M1:	Correct straight line method for an equation of a tangent where $m_T (\neq m_N)$ is found by using calculus. Note: m_T must be a function of t for this mark
Al:	Correct equation of the tangent which can be simplified or un-simplified
Ml:	Attempts to find either the x-coordinate of A or the y-coordinate of B
Al:	Both {x-coordinate of A is} $2ct$ and the {y-coordinate of B is} $\frac{2c}{t}$
M1:	See scheme
A1:	See scheme
M1:	See scheme
M1:	See scheme
Al:	See scheme

Way 2	
M1:	Same description as the 1st M mark in Way 1
M1:	See scheme
Al:	Correct equation of the tangent which can be simplified or un-simplified
M1:	Attempts to find either the x-coordinate of A or the y-coordinate of B
A1:	Both {x-coordinate of A is} $\sqrt{2}c$ and the {y-coordinate of B is} $2\sqrt{2}c$
M1:	Recognising that the gradient of the tangent is -2 and puts this equal to their $\frac{dy}{dx}$ and finds $t =$
Al:	See scheme
M1:	See scheme
M1:	See scheme
Al:	See scheme
Way 3	
M1:	Same description as the 1st M mark in Way 1
M1:	See scheme
Al:	Correct equation of the tangent which can be simplified or un-simplified
M1:	Uses $y = 2x$ and Area (<i>OAB</i>) = 32 to find either x_A or y_B
Al:	Either {x-coordinate of A is} $4\sqrt{2}$ or the {y-coordinate of B is} $8\sqrt{2}$
M1:	Recognising that the gradient of the tangent is -2 and puts this equal to their $\frac{dy}{dx}$ and finds $t =$
Al:	See scheme
M1:	Substitutes their P (which is in terms of c, and has come from a correct method) into the equation of the tangent and finds $c =$
M1:	See scheme
A1:	See scheme

	Notes for Question	
Way 4		
M1:	See scheme	
M1:	See scheme	
Al:	Correct equation of the tangent which can be simplified or un-simplified	
M1:	Uses $y = 2x$ and Area (<i>OAB</i>) = 32 to find either x_A or y_B	
Al:	Either {x-coordinate of A is} $4\sqrt{2}$ or the {y-coordinate of B is} $8\sqrt{2}$	
M1:	See scheme	
Al:	See scheme	
M1:	See scheme	
M1:	See scheme	
Al:	See scheme	

Q5.

Question	Scheme	Marks	AOs
(a)	(<i>a</i> ,0)	B1	1.1b
-	0.25 26	(1)	-
(b)	$SP = ap^2 + a$ Note that if focus-directrix property not used may use Pythagoras:	B1	1.1b
-	E.g. $SP = \sqrt{4a^2p^2 + (ap^2 - a)^2} = = ap^2 + a$	(1)	-
(c)	<i>M</i> has coordinates $\left(\frac{ap^2 + aq^2}{2}, \frac{2ap + 2aq}{2}\right)$	B1	1.16
	$y^2 = a^2 \left(p^2 + 2pq + q^2 \right)$	M1	1.1b
	$y^2 = a^2 \left(p^2 - 2 + q^2 \right)$	A1	2.1
	$2a(x-a) = 2a\left(\frac{1}{2}ap^2 + \frac{1}{2}aq^2 - a\right) = a^2\left(p^2 + q^2 - 2\right)$	M1	1.1t
	$\Rightarrow y^2 = 2a(x-a)^*$	A1*	2.1
		(5)	
	Alternative for (c)		
	<i>M</i> has coordinates $\left(\frac{ap^2 + aq^2}{2}, \frac{2ap + 2aq}{2}\right)$	B1	1.16
	$\frac{y}{a} = p + q$	M1	1.18
	$\frac{y^2}{a^2} = p^2 + q^2 + 2pq = p^2 + q^2 - 2$	A1	2.1
	$\frac{2x}{a} = p^2 + q^2$	M1	1.11
	$\frac{y^2}{a^2} = \frac{2x}{a} - 2 \Rightarrow y^2 = 2a(x-a)^*$	A1*	2.1
		(5)	
8			mark

Notes	
(a)	
B1: Correct coordinates	
(b)	
B1: Correct expression	
(c)	
B1: Correct coordinates for the midpoint	
M1: Squares their y coordinate of the midpoint	
A1: Uses $pq = -1$ to obtain a correct expression for y^2	
M1: Attempts $2a(x - a)$ using the x coordinate of their midpoint and attempts to simplify	
A1*: Fully correct completion to show $y^2 = 2a(x-a)$	
Alternative	
B1: Correct coordinates for the midpoint	
M1: Uses their y coordinate of the midpoint to find $p + q$	
A1: Square and uses $pq = -1$ to obtain a correct expression for y^2/a^2	
M1: Uses the x coordinate of their midpoint to find $p^2 + q^2$	
A1*: Fully correct completion to show $y^2 = 2a(x-a)$	

Question	Scheme	Marks	AOs
(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2a}{2ap} = \frac{1}{p}$		
	dx = 2ap = p		
	or		
	$y = 2\sqrt{a}\sqrt{x} \Rightarrow \frac{dy}{dx} = \frac{\sqrt{a}}{\sqrt{x}} = \frac{1}{p}$	B1	1.1b
	or		
	$2y\frac{dy}{dx} = 4a \Rightarrow \frac{dy}{dx} = \frac{2a}{y} = \frac{1}{p}$		
	$y - 2ap = -p\left(x - ap^2\right)$	M1	2.1
	$2aq-2ap=-p\left(aq^2-ap^2\right)$	A1	1.1b
	$pq^2 + 2q - 2p - p^3 = 0$	10.5.5.1	32555
	$(q-p)(pq+p^2+2)=0 \Rightarrow q=$	M1	3.1a
	$q = \frac{-p^2 - 2}{p} *$	A1*	1.1b
	2	(5)	
(b)	$PQ^{2} = (ap^{2} - aq^{2})^{2} + (2ap - 2aq)^{2}$	M1	1.1b
	$=a^{2}(p-q)^{2}(p+q)^{2}+4a^{2}(p-q)^{2}$		
	$=a^{2}\left(p-q\right)^{2}\left[\left(p+q\right)^{2}+4\right]$	M1	2.1
		A1	1.1b
	$=a^{2}\left(2p+\frac{2}{p}\right)^{2}\left[\left(-\frac{2}{p}\right)^{2}+4\right]$		
	$=\frac{4a^{2}}{p^{2}}(p^{2}+1)^{2}\frac{4}{p^{2}}(p^{2}+1)=\frac{16a^{2}}{p^{4}}(p^{2}+1)^{3}$	A1	1.1b
	$= p^{2} (p^{2} + 1) p^{2} (p^{2} + 1) = p^{4} (p^{2} + 1)$	Al	1.1b
		(5)	marks

Notes	
(a)	
31: Deduces the correct tangent gradient	
M1: Correct strategy for the equation of the normal	
A1: Correct equation in terms of p and q	
M1: Applies a correct strategy for finding q in terms of p . E.g. uses the fact that $q = p$ is known and uses inspection or long division to find the other root	L
A1*: Correct proof with no errors	
Alternative:	
31: As above	
M1A1: $\frac{2aq - 2ap}{aq^2 - ap^2} \times \frac{1}{p} = -1$	
M1: Finds gradient of PQ and uses product of gradients $= -1$	
A1: Correct equation	
M1A1: As above	
b)	
M1: Applies Pythagoras correctly to find PQ^2	
M1: Uses their q in terms of p to obtain an expression in terms of p only	
A1: Correct expression in any form in terms of p only	
A1: $k = 16$ or $n = 3$	
A1: $k = 16$ and $n = 3$	

Q7.

Question	Scheme	Marks	AOs
(a)	$\left(\frac{5}{2},0\right)$ o.e.	B1	2.2a
		(1)	
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{5}{q}$	B1	1.1b
	At P, $x = \frac{q^2}{10}$ so tangent has equation $y - q = \text{their} \frac{5}{q} \left(x - \frac{q^2}{10} \right)$ or $q = \left(\text{their} \frac{5}{q} \right) \left(\frac{q^2}{10} \right) + c \Rightarrow c = \dots$ to reach an equation for y	Ml	1.1b
	$\Rightarrow qy - q^{2} = 5x - \frac{q^{2}}{2} \Rightarrow 10x - 2qy + q^{2} = 0 * \csc $ or $\Rightarrow y = \frac{5}{q}x + \frac{q}{2} \Rightarrow 10x - 2qy + q^{2} = 0 * \csc $	A1*	2.1
		(3)	

(c)	B is $\left(-\frac{5}{2},q\right)$ o.e.	B1	2.2a
	So diagonal <i>BF</i> has equation $\frac{y-0}{q-0} = \frac{x-\frac{5}{2}}{-\frac{5}{2}-\frac{5}{2}}$ or $y = -\frac{q}{5}\left(x-\frac{5}{2}\right)$	Ml	1.1b
	$(AP \text{ is a tangent so) diagonals meet when}$ $10x - 2q\left(-\frac{q}{5}\left(x - \frac{5}{2}\right)\right) + q^2 = 0$ or $x = \frac{2qy - q^2}{10} \text{ therefore } y = -\frac{q}{5}\left(\frac{2qy - q^2}{10} - \frac{5}{2}\right) \text{ leading to } y = \dots$ $\left\{y = \frac{25q + q^3}{50 + 2q^2}\right\}$	dM1	3.1a
	$\Rightarrow 10x + \frac{2q^2}{5}x - q^2 + q^2 = 0 \Rightarrow x \left(10 + \frac{2q^2}{5} \right) = 0$ or $x = \frac{1}{10} \left(2q \left(\frac{25q + q^3}{50 + 2q^2} \right) - q^2 \right)$	М1	1.1b
	But $10 + \frac{2q^2}{5} > 0$ so not zero, hence $x = 0$, so the intersection lies on the <i>y</i> -axis.	Al	2.4

	Or achieves $x = 0$ (with no errors), so the intersection lies on the y		
	axis.	(5)	
		(5)	
	Alternative for the last three marks		
	When $x = 0$ for BF $y = -\frac{q}{5}\left(-\frac{5}{2}\right) = \dots$ or for AP $2qy = q^2 \Rightarrow y = \dots$	Ml	1.11
	For <i>BF</i> y intercept is $\frac{q}{2}$ and for <i>AP</i> y intercept is $\frac{q}{2}$	M1	3.1
	Since both diagonals always cross the <i>y</i> -axis at the same place, their intersection must always be on the <i>y</i> axis.	Al	2.4
		(9 1	marks
Notes:			
(a) B1: Deduce	es correct coordinates.		
(b)			
100000	reducing dy 5		
DI: Using	or deriving $\frac{dy}{dx} = \frac{5}{q}$		
		a	1
M1: Finds	the equation of the tangent using the equation of a line formula with $y_1 =$	$q, x = \frac{q}{10}$	or (or
		10	
clear attem	pt at it) and $m = \frac{2 \times \text{their}'a'}{a}$.		
If uses v =	mx + c must find a value for c and substitute back to find an equation for	the tanger	nt
and the second second second	A STREAM WAS AN AND AN ADDREAM AND AND ADDREAM AND AND ADDREAM AND ADDREAM AND AND AND AND ADDREAM AND	uic tangei	
AI . Com	lates correctly to the given equation, no errors seen		
(0)	eletes correctly to the given equation, no errors seen.		
(c) B1: <i>B</i> is (-	bletes correctly to the given equation, no errors seen. $\left(\frac{5}{2}, q\right)$ seen or used.		
B1 : <i>B</i> is (-	$\left(\frac{5}{2},q\right)$ seen or used.	s of F and	1 <i>B</i>
B1: B is $\left(-M1: A \text{ corr}\right)$	$\left(\frac{5}{2},q\right)$ seen or used. ect method to find the equation of the diagonal <i>BF</i> using their coordinate		
B1: B is (- M1: A con dM1: Uses	$\left(\frac{5}{2},q\right)$ seen or used.		
B1: <i>B</i> is (- M1: A con dM1: Uses involving <i>x</i>	$\left(\frac{5}{2},q\right)$ seen or used. ect method to find the equation of the diagonal <i>BF</i> using their coordinate the printed answer in (b) and their equation of the diagonal <i>BF</i> to form a	n equation	
B1: <i>B</i> is (- M1: A con dM1: Uses involving <i>x</i>	$\left(\frac{5}{2}, q\right)$ seen or used. ect method to find the equation of the diagonal <i>BF</i> using their coordinate the printed answer in (b) and their equation of the diagonal <i>BF</i> to form an or solves the two diagonals simultaneously to find an expression for y thy factors out the x to achieve $x() = 0$ or uses their expression for y to find	n equation	
B1: <i>B</i> is (- M1: A con dM1: Uses involving <i>x</i> M1: Correct expression	$\left(\frac{5}{2}, q\right)$ seen or used. ect method to find the equation of the diagonal <i>BF</i> using their coordinate the printed answer in (b) and their equation of the diagonal <i>BF</i> to form an or solves the two diagonals simultaneously to find an expression for y thy factors out the x to achieve $x() = 0$ or uses their expression for y to find	n equation	
B1: <i>B</i> is (- M1: A corr dM1: Uses involving <i>x</i> M1: Correc expression A1: Conclu	$\left(\frac{5}{2},q\right)$ seen or used. ect method to find the equation of the diagonal <i>BF</i> using their coordinate the printed answer in (b) and their equation of the diagonal <i>BF</i> to form a or solves the two diagonals simultaneously to find an expression for y thy factors out the x to achieve $x() = 0$ or uses their expression for y to fi for x	n equation	
B1: <i>B</i> is (- M1: A corr dM1: Uses involving <i>x</i> M1: Correc expression A1: Conclu	$\left(\frac{5}{2},q\right)$ seen or used. ect method to find the equation of the diagonal <i>BF</i> using their coordinate the printed answer in (b) and their equation of the diagonal <i>BF</i> to form a or solves the two diagonals simultaneously to find an expression for y thy factors out the x to achieve $x() = 0$ or uses their expression for y to factor for x assion given including reference to $10 + \frac{2q^2}{5} \neq 0$	n equation	
B1: <i>B</i> is (- M1: A corr dM1: Uses involving <i>x</i> M1: Correc expression A1: Conclu Alternative M1: Attem	$\left(\frac{5}{2},q\right)$ seen or used. ect method to find the equation of the diagonal <i>BF</i> using their coordinate the printed answer in (b) and their equation of the diagonal <i>BF</i> to form a or solves the two diagonals simultaneously to find an expression for y thy factors out the x to achieve $x() = 0$ or uses their expression for y to factor for x estion given including reference to $10 + \frac{2q^2}{5} \neq 0$ e for last three marks	n equation	
B1: B is (- M1: A con dM1: Uses involving x M1: Correc expression A1: Conclu Alternative M1: Attem M1: Finds	$\left(\frac{5}{2},q\right)$ seen or used. ect method to find the equation of the diagonal <i>BF</i> using their coordinate the printed answer in (b) and their equation of the diagonal <i>BF</i> to form an or solves the two diagonals simultaneously to find an expression for y thy factors out the x to achieve $x() = 0$ or uses their expression for y to factor for x usion given including reference to $10 + \frac{2q^2}{5} \neq 0$ e for last three marks pts to find the y intercept for at least one of the two diagonals.	n equation	n just

Q8.

Question	Scheme	Marks	AOs
(a)	$y + x \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{y}{x} = \frac{\frac{6}{t}}{6t} = -\frac{1}{t^2} \text{ or } y = \frac{36}{x} \Rightarrow \frac{dy}{dx} = -\frac{36}{x^2} = -\frac{36}{(6t)^2} = -\frac{1}{t^2} \text{ or } \frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt} = \frac{-6t^{-2}}{6} = -\frac{1}{t^2}$	M1	1.1b
	$y - \frac{6}{t} = " - \frac{1}{t^2}"(x - 6t)$	M1	1.1b
	$yt^2 + x = 12t^*$	A1 *	2.1
		(3)	
	$\frac{dy}{dx} = -\frac{y}{x} = \frac{\frac{3}{t}}{12t} = -\frac{1}{4t^2} \text{ and } y - \frac{3}{t} = ' -\frac{1}{4t^2} '(x - 12t)$	M1	1.1b
(b)	$y - \frac{3}{t} = -\frac{1}{4t^2}(x - 12t)$ o.e such as $4yt^2 + x = 24t$	A1	1.1b
		(2)	
(c)	E.g. $\frac{4yt^2 + x = 24t}{yt^2 + x = 12t}$ $3yt^2 = 12t \Rightarrow y = \text{ and } x = 12t - yt^2 =$	M1	2.1
	$x = 8t$ and $y = \frac{4}{t}$	A1	1.1b
	xy =	dM1	1.1b
	xy = 32 hence rectangular hyperbola	A1	2.4
		(4)	
	1	(9 n	narks)

Notes:

(a)

M1: Differentiates implicitly, directly or parametrically to find the gradient at the point P in terms of t. Allow slips in coefficients, as long as method is clear.

M1: Finds the equation of the tangent at the point P using their gradient (not reciprocal etc). If using y = mx + c must proceed to find c and substitute back in to equation.

A1*: The correct equation for the tangent at the point P from correct working.

(b)

M1: Finds the new gradient (any method as above) and proceeds to find the equation of the tangent at the point Q. Alternatively replaces t by 2t in the answer to (a).

A1: Correct equation - any form, need not be simplified and isw after a correct equation.

(c)

M1: Solves their simultaneous equations to find both the x and y coordinate for the point R.

A1: Correct point of intersection, it does not need to be simplified.

dM1: Dependent on the first method mark. Multiplies x by y to reach a constant.

Al: Shows that xy = 32 and hence rectangular hyperbola

Q9.

Question	Scheme	Marks	AOs
	$y^2 = 4ax \Rightarrow 2y \frac{dy}{dx} = 4a$	M1	2.1
	$\frac{dy}{dx} = \frac{2a}{y} \Rightarrow$ Gradient of normal is $\frac{-y}{2a} = -p$	A1	1.1b
	Equation of normal is : $y - 2ap = -p(x - ap^2)$	M1	1.1b
	Normal passes through $Q(aq^2, 2aq)$ so $2aq + apq^2 = 2ap + ap^3$	M1	3.1a
	Grad $OP \times$ Grad $OQ = -1 \Rightarrow \frac{2ap}{ap^2} \frac{2aq}{aq^2} = -1$	M1	2.1
	$q = \frac{-4}{p}$	A1	1.1b
	$2a\left(\frac{-4}{p}\right) + ap\left(\frac{16}{p^2}\right) = 2ap + ap^3 \Longrightarrow p^4 + 2p^2 - 8 = 0$	M1	2.1
	$(p^2 - 2)(p^2 + 4) = 0 \implies p^2 = \dots$	M1	1.1b
	Hence $(as p^2 + 4 \neq 0), p^2 = 2*$	A1*	1.1b
		(9)	
		M1	2.1
	First three marks as above and then as follows.	A1	1.1b
ALT 1		M1	1.1b
	Solves $y^2 = 4ax$ and their normal simultaneously to find, in terms of <i>a</i> and <i>p</i> , either $x_Q \left(=ap^2 + 4a + \frac{4a}{p^2}\right)$ or $y_Q \left(=-2ap - \frac{4a}{p}\right)$	M1	3.1a
	Finds the second coordinate of Q in terms of a and p	M1	1.1b
	Both $x_{\varrho} = ap^2 + 4a + \frac{4a}{p^2}$ and $y_{\varrho} = -2ap - \frac{4a}{p}$	A1	1.1b
	Grad $OP \times$ Grad $OQ = -1 \Rightarrow \frac{2ap}{ap^2} \times \frac{-2ap - \frac{4a}{p}}{ap^2 + 4a + \frac{4a}{p^2}} = -1$	M1	2.1
	Simplifies expression and solves: $4p^2 + 8 = p^4 + 4p^2 + 4$ $\Rightarrow p^4 - 4 = 0 \Rightarrow (p^2 - 2)(p^2 + 2) = 0 \Rightarrow p^2 =$	M1	2.1
	$p^{2} = p^{2} + 2 \neq 0, p^{2} = 2^{*}$ Hence (as $p^{2} + 2 \neq 0$), $p^{2} = 2^{*}$	A1*	1.1b
	- 2220 - 200 F. (1.7.1.7.1.7.1.7.1.7.1.7.1.7.1.7.1.7.1.7	(9)	0.01010278

Question	Scheme	Marks	AOs
	First three marks as above and then as follows.	M1	2.1
		A1	1.1b
ALT 2		M1	1.1b
	Solves $y^2 = 4ax$ and their normal simultaneously to find, in terms of <i>a</i> and <i>p</i> , either $x_Q \left(=ap^2 + 4a + \frac{4a}{p^2}\right)$ or $y_Q \left(=-2ap - \frac{4a}{p}\right)$	M1	3.1a
	Forms a relationship between p and q from their first coordinate: either $y_Q = 2a\left(-p - \frac{2}{p}\right) \Rightarrow q = -p - \frac{2}{p}$ or $x_Q = a\left(p + \frac{2}{p}\right)^2 \Rightarrow q = \pm \left(p + \frac{2}{p}\right)$	М1	2.1
	$q = -p - \frac{2}{p}$ (if x coordinate used the correct root must be clearly identified before this mark is awarded).	A1	1.1b
	Grad $OP \times$ Grad $OQ = -1 \Rightarrow \frac{2ap}{ap^2} \times \frac{2aq}{aq^2} = -1 \left(\Rightarrow q = -\frac{4}{p}\right).$	M1	2.1
	Sets $q = -p - \frac{2}{p} = -\frac{4}{p}$ and solves to give $p^2 =$	M1	1.1b
	Hence $\left(\text{as } q = p + \frac{2}{p} = -\frac{4}{p} \text{ gives no solution} \right), p^2 = 2 \text{ (only)}^*$	A1*	1.1b
		(9)	

	Notes	
M1	Begins proof by differentiating and using the perpendicularity condition at point P in order to find the equation of the normal.	
A1	Correct gradient of normal, $-p$ only.	
M1	Use of $y - y_1 = m(x - x_1)$. Accept use of $y = mx + c$ and then substitute to find c.	
M1	Substitute coordinates of Q into their equation to find an equation relating p and q .	
M1	Use of $m_1m_2 = -1$ with <i>OP</i> and <i>OQ</i> to form a second equation relating p and q.	
A1	$q = \frac{-4}{p}$ only.	
M1	Solves the simultaneous equations and cancels a from their results to obtain a quadratic equation in p^2 only.	
M1	Attempts to solve their quadratic in p^2 . Usual rules.	
A1*	Correct solution leading to given answer stated. No errors seen.	

	Notes continued
ALT 1	
M1A1M1	As main scheme.
M1	Solves $y^2 = 4ax$ and their normal simultaneously to find one of the coordinates for
	Q in terms of a and p as shown.
M1	Finds the second coordinate of Q in terms of a and p .
A1	Both coordinates correct in terms of a and p .
M1	Use of $m_1m_2 = -1$ with <i>OP</i> and <i>OQ</i> . i.e. $\frac{2ap}{ap^2} \times \frac{\text{their } y_Q}{\text{their } x_Q} = -1$ with coordinates of
	P and their expressions for x_Q and y_Q .
M1	Cancels the <i>a</i> 's, simplifies to a quadratic in p^2 and solves the quadratic. Usual rules.
A1*	Correct solution leading to the given answer stated. No errors seen.
ALT 2	
M1A1M1	As main scheme.
M1	Solves $y^2 = 4ax$ and their normal simultaneously to find one of the coordinates for
	Q in terms of a and p as shown.
M1	Uses their coordinate to form a relationship between <i>p</i> and <i>q</i> . Allow $q = \left(p + \frac{2}{p}\right)$
	for this mark.
A1	For $q = -p - \frac{2}{p}$. If the <i>x</i> coordinate was used to find <i>q</i> then consideration of the
	negative root is needed for this mark. Allow for $q = \pm \left(p + \frac{2}{p}\right)$.
M1	Use of $m_1m_2 = -1$ with <i>OP</i> and <i>OQ</i> to form a second equation relating <i>p</i> and <i>q</i> only.
M1	Equates expressions for q and attempts to solve to give $p^2 = \dots$
A1*	Correct solution leading to the given answer stated. No errors seen. If x coordinate used, invalid solution must be rejected.