Reducible Differential Equations Cheat Sheet

Many real-life situations can be modelled using differential equations. As a result, it is very useful to be able to solve these equations. Numerous methods can be employed to solve differential equations of different forms.

First-order differential equations

Substitutions allow us to solve a first-order differential equation, either by separating the variables or using an integrating factor.

Example 1: Using the substitution u = x + y, transform the differential equation $\frac{dy}{dx} = \frac{x+y-1}{5-x-y}$ into the form 4dx = (5-u)du, and solve with the initial condition that y(0) = 2.

miner differentiate the end with stress branches of	and a start of the start
First, differentiate the substitution. Note that $y' =$	$u = x + y, \Rightarrow u' = 1 + y'$
$\frac{dy}{dy}$.	$\Rightarrow y' = u' - 1$
dx	<u> </u>
Substitute y' into the differential equation and	$u'-1 = \frac{u-1}{2} \Rightarrow u' = \frac{u-1}{2} + 1$
rearrange.	5-u $5-u$
	$\Rightarrow u' = \frac{4}{1}$
	$\rightarrow u = \frac{1}{5-u}$
	du = 4
	$\Rightarrow \frac{1}{dx} = \frac{1}{5-u} \Rightarrow (5-u)au = 4ax$
This say he called using association of unitables	
This can be solved using separation of variables.	(5-u)du = 4dx
	J`´J
	$u^2 = 4u + c$
	$5u - \frac{1}{2} = 4x + c$
Substitute <i>u</i> back in.	$(x+y)^2$
	$5(x+y) - \frac{1}{2} = 4x + c$
	$\Rightarrow 10(r + v) - (r + v)^2 = 8r + 2c$
	$\Rightarrow 10(x + y) = 0x + 2c$ $\Rightarrow 10x + 10y = x^2 - 2xy = y^2 - 9x + c$
	$\Rightarrow 10x + 10y - x - 2xy - y = 0x + c_1$
	$\Rightarrow 2x + 10y - 2xy - x^2 - y^2 = c_1$
Use the given condition $y(0) = 2$ to find c_1 .	$2(0) + 10(2) - 2(0)(2) - (0)^2 - (2)^2 = c_1$
	$\Rightarrow c_1 = 16$
State the particular solution.	$2x + 10y - 2xy - x^2 - y^2 = 16$

As per the specification, the substitutions will be given, and be reducible to the forms of differential equations you will have seen previously.

Example 2: Use the substitution $z = \sqrt{x}$ to transform the differential equation $\frac{dx}{dt} + t^2 x = t^2 \sqrt{x}$ into one in terms of t and z. Using the transformed equation, find the general solution to the original equation.

$z = x^{\frac{1}{2}} \Rightarrow x = z^{2} \Rightarrow \frac{dx}{dt} = 2z\frac{dz}{dt}$
$2z\frac{dz}{dt} + t^2 z^2 = t^2 z$
$\frac{dz}{dt} + \frac{t^2}{2}z = \frac{t^2}{2}$
$I = e^{\int \frac{t^2}{2} dt}$ $I = e^{\frac{t^3}{6}}$
$e^{\frac{t^3}{6}}\frac{dz}{dt} + e^{\frac{t^3}{6}}\frac{t}{2}z = e^{\frac{t^3}{6}}\frac{t^2}{2}$ $\frac{d}{dt}\left(e^{\frac{t^3}{6}}z\right) = e^{\frac{t^3}{6}}\frac{t^2}{2}$ Integrating both sides with respect to t we get, $e^{\frac{t^3}{6}}z = e^{\frac{t^3}{6}} + c$
$z = 1 + \frac{c}{e^{\frac{t^3}{6}}}$
$z = 1 + \frac{c}{e^{\frac{t^3}{6}}} \Rightarrow \sqrt{x} = 1 + \frac{c}{e^{\frac{t^3}{6}}}$ $\Rightarrow x = (1 + \frac{c}{e^{\frac{t^3}{6}}})^2$

Second order differential equations

Substitutions can also reduce second order differential equations into those of the form $a \frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy =$ f(x). Again, in an exam you will be given the substitution necessary.

Example 3: Find the general solution of the differential equation $x^2 \frac{d^2y}{dx^2} + 12x \frac{dy}{dx} + 10y = 0$ using the substitution $x = e^u$, which can be solved by considering the auxiliary equation. (Remember that u is a function of x)

To make the substitution, we need to find $\frac{dy}{dx}$ and	$x = e^u \Rightarrow \frac{dx}{dt} = e^u = x$
$\frac{d^2y}{dx}$ in terms of $\frac{dx}{dx}$. We can differentiate $\frac{d}{dx}\left(e^{u}\frac{dy}{dy}\right)$	au Using the chain rule
dx^2 du $du \setminus dx/$	dy dy dx dy dy
dx dx $d^2y dx$	$\frac{dy}{du} = \frac{dy}{dx} \times \frac{du}{du} = e^u \frac{dy}{dx} = x \frac{dy}{dx}$
Use $\frac{du}{du} = e^u = x$ to simplify $e^u \frac{dy}{dx^2} \frac{du}{du}$.	Using the product rule and chain rule.
	$d^2 y = d (dy) = d (dy)$
	$\frac{du^2}{du^2} = \frac{du}{du} \left(\frac{dy}{du} \right) = \frac{du}{du} \left(e^u \frac{dy}{du} \right)$
	du du du du du dx
	$=e^{u}\frac{dy}{dx}+e^{u}\frac{dy}{dx^{2}}\frac{du}{du}$
	dx = dx + du $dy = d^2y$
	$=\frac{dy}{du}+x^2\frac{dy}{dx^2}$
	$d^2y d^2y d^2y dy$
	$x^2 \frac{y}{dx^2} = \frac{y}{du^2} - \frac{y}{du}$
Substitute the expressions found for $r^2 \frac{d^2 y}{d^2 y}$ and	d^2y dy
dy dx^2	$x^{2} \frac{dx^{2}}{dx^{2}} + 12x \frac{dx}{dx} + 10y = 0$
$x \frac{dy}{dx}$ into the original differential equation and	$\begin{pmatrix} d^2y & dy \end{pmatrix}$ $+ 12 dy + 10 = 0$
simplify.	$\Rightarrow \left(\frac{1}{du^2} - \frac{1}{du}\right) + 12\frac{1}{du} + 10y = 0$
	$d^2y dy$
	$\Rightarrow \frac{1}{du^2} + 11\frac{1}{du} + 10y = 0$
Write down and solve the auxiliary equation.	$m^2 + 11m + 10 = 0$
	$m_1 = -1, \qquad m_2 = -10$
Write down the general solution in terms of <i>u</i> .	$y = Ae^{m_1 u} + Be^{m_2 u}$
	$y = Ae^{-u} + Be^{-10u}$
	Where A and B are arbitrary constants
Reverse the substitution.	$x = e^u \Rightarrow u = \ln x$
	$y = Ae^{-\ln x} + Be^{-10\ln x}$
	$y = \frac{A}{A} + \frac{B}{B}$
	$y = \frac{1}{x} + \frac{1}{x^{10}}$

Modelling with differential equations

Questions may be asked in different ways, for example you may be asked to model real-life situations such as the velocity of a particle, displacement of a particle, or movement of a spring. You may have to state conditions for the system or explain what happens to the model over time.

c) Find the velocity at t = 3s.

a) Find expressions for $\frac{dz}{dt}$ a

Substitute into the original

b) Separate the variables a

earrange for z.	

Reverse the substitution.

Substitute in the conditions

Thus, state the particular solution

c) Substitute in t = 3 to find

Edexcel A Level Further Maths: FP1

Example 4: The velocity, v, of a particle at time t seconds is modelled using the differential equation,

$$2t\frac{dv}{dt} + 2v = -3t^2v^3$$

a) Use the substitution z = vt to transform the differential equation into one in terms of z and t.

b) Given that when t = 1, v = 1, find the general solution.

ind <i>v</i> .	$z = vt \Rightarrow \frac{dz}{dt} = t \frac{dv}{dt} + v$
	$dv \frac{dz}{dt} - v$
	$\Rightarrow \frac{dt}{dt} = \frac{dt}{z} t$
	$v = -\frac{1}{t}$
differential equation.	$2t\left(\frac{\frac{dz}{dt}-v}{t}\right)+2v=-3t^2\left(\frac{z}{t}\right)^3$
	$\Rightarrow 2\left(\frac{dz}{dt}\right) = -3t^2 \frac{z^3}{t^3} \Rightarrow 2\left(\frac{dz}{dt}\right) = -\frac{3z^3}{t}$
nd integrate.	$2\left(\frac{dz}{dt}\right) = -\frac{3z^3}{t} \Rightarrow \frac{dz}{dt} = -\frac{3z^3}{2t}$
	$\Rightarrow -\frac{1}{z^3}dz = \frac{3}{2t}dt$
	$\int -\frac{1}{z^3} dz = \int \frac{3}{2t} dt$
	$\Rightarrow \frac{1}{2z^2} = \frac{3}{2}\ln t + c$
	$2z^2 = \frac{2}{3\ln t + 2c}$
	$\Rightarrow z = \sqrt{\frac{1}{3\ln t + 2c}}$
	$vt = \sqrt{\frac{1}{3\ln t + 2c}} \Rightarrow vt = \sqrt{\frac{1}{3\ln t + c_1}}$
	Thus,
	$v = \frac{1}{t} \sqrt{\frac{1}{3\ln t + c_1}}$
$t = 1, v = 1$ to find c_1 .	$1 = \sqrt{\frac{1}{c_1}}$
ution.	$l_1 - l$
	$v = \frac{1}{t} \sqrt{\frac{1}{3\ln t + 1}}$
v.	1 1
	$v = \frac{1}{3}\sqrt{3\ln 3 + 1}$
	$v = 0.161(3. \operatorname{sig. figs})$

