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Taylor series are used to approximate functions. Approximating a more complicated function by an infinite sum of 
polynomials means it can be solved numerically. This means that Taylor series have lots of applications in physics and 
engineering. Taylor series also allows integrals of functions with no antiderivative to be approximated, but in this topic we 
will focus on using Taylor series to find approximate solutions to differential equations that can’t be solved easily by other 
methods.  
 
Taylor series 
In the second book for Core Pure, Maclaurin series were introduced. As a recap, Maclaurin series allow a function of 𝑥 that 
is infinitely differentiable, with the derivatives defined for all 𝑛 ∈ ℕ, to be written as an infinite series in ascending powers 
of 𝑥, and focuses on 𝑥 = 0. Clearly, this is not ideal, as not all functions have derivatives that are defined for all natural 
numbers, such as ln 𝑥. To overcome this, we derive a series expansion that focuses on 𝑥 = 𝑎 instead, which we call Taylor 
series and is a more general form of the Maclaurin series, which is given in two different forms: 

• 𝑓(𝑥 + 𝑎) = 𝑓(𝑎) + 𝑓′(𝑎)𝑥 +
𝑓′′(𝑎)

2!
𝑥2 +

𝑓′′′(𝑎)

3!
𝑥3 + ⋯ +

𝑓(𝑟)(𝑎)

𝑟!
𝑥𝑟 + ⋯ 

• 𝑓(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) +
𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 +

𝑓′′′(𝑎)

3!
(𝑥 − 𝑎)3 + ⋯ +

𝑓(𝑟)(𝑎)

𝑟!
(𝑥 − 𝑎)𝑟 + ⋯ 

 

These expansions are known as Taylor series of 𝑓(𝑥) at the point 𝑥 = 𝑎. The Taylor series expansion is only valid if 𝑓(𝑛)(𝑎) 
exists and is finite for all 𝑛 ∈ ℕ, and for values of 𝑥 for which the infinite series converges. The Taylor series expansion is 
not given in the formula booklet- it is essential that you learn them both!  
 

Example 1: Find the Taylor series of sin 𝑥 about the point 𝑥 =
𝜋

3
 up to and including the term 𝑥3. 

Use the first expansion given:  

𝑓(𝑥 + 𝑎) = 𝑓(𝑎) + 𝑓′(𝑎)𝑥 +
𝑓′′(𝑎)

2!
𝑥2 +

𝑓′′′(𝑎)

3!
𝑥3

+ ⋯ +
𝑓(𝑟)(𝑎)

𝑟!
𝑥𝑟 + ⋯ 

 

If 𝑓(𝑥) = sin 𝑥, then sin (𝑥 +
𝜋

3
) = 𝑓(𝑥 +

𝜋

3
) 

Find the first, second and third derivatives at the point 
𝑎, since we only need to expand the series up to the 
term 𝑥3. 

𝑓(𝑥) = sin 𝑥 ⟹ 𝑓 (
𝜋

3
) =

√3

2
 

𝑓′(𝑥) = cos 𝑥 ⇒ 𝑓′ (
𝜋

3
) =

1

2
 

𝑓′′(𝑥) = − sin 𝑥 ⟹ 𝑓′′ (
𝜋

3
) = −

√3

2
 

𝑓′′′(𝑥) = − cos 𝑥 ⇒ 𝑓′′′ (
𝜋

3
) = −

1

2
 

Substitute the values found into the expansion. 
sin (𝑥 +

𝜋

3
) =

√3

2
+

1

2
𝑥 − (

√3

2
×

1

2!
) 𝑥2 − (

1

2
×

1

3!
) 𝑥3

+ ⋯  
Simplify the expression 

sin (𝑥 +
𝜋

3
) =

√3

2
+

1

2
𝑥 −

√3

4
𝑥2 −

1

12
𝑥3 + ⋯ 

 
Finding limits 
Previously, you have considered limits of a function as 𝑥 approaches 0 or ∞ by looking at how different parts of the 
functions behave. It is also possible to evaluate limits of a function as 𝑥 approaches a certain value 𝑎, which is denoted 
lim
𝑥→𝑎

𝑓(𝑥) = 𝐿, where 𝐿 is the numerical value of the limit. Limits can be found in many different ways, with the simplest 

way being to separate the limit into other limits that you already know, and follow properties that are sometimes 
referred to as the algebra of limits: 

• Given lim
𝑥→𝑎

𝑓(𝑥) = 𝐿 and lim
𝑥→𝑎

𝑔(𝑥) = 𝑀, then: 

• lim
𝑥→𝑎

(𝑓(𝑥) + 𝑔(𝑥)) = 𝐿 + 𝑀 

• For a constant 𝑐, lim
𝑥→𝑎

𝑐 𝑓(𝑥) = 𝑐𝐿 

• lim
𝑥→𝑎

𝑓(𝑥)𝑔(𝑥) = 𝐿𝑀 

• If 𝑀 ≠ 0, then lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
=

𝐿

𝑀
 

 

Example 2: Evaluate the limit lim
𝑥→∞

5−3𝑥

4+𝑥
 

We can begin by trying to use the rule ‘if 𝑀 ≠ 0, then 

lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
=

𝐿

𝑀
’ 

 

lim
𝑥→∞

5 − 3𝑥 = −∞ 

lim
𝑥→∞

4 + 𝑥 = ∞ 

This leaves the original limit as −
∞

∞
, which is 

indeterminate, and we cannot determine the limit 
directly. This means we need to change the form of the 
limit. 

Divide the numerator and denominator by 𝑥. 

lim
𝑥→∞

5 − 3𝑥

4 + 𝑥
= lim

𝑥→∞

5
𝑥

− 3

4
𝑥

+ 1
 

Apply the rule ‘if 𝑀 ≠ 0, then lim
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
=

𝐿

𝑀
’ lim

𝑥→∞

5

𝑥
− 3 = −3 

lim
𝑥→∞

4

𝑥
+ 1 = 1 

So, lim
𝑥→∞

5−3𝑥

4+𝑥
=  lim

𝑥→∞

5

𝑥
−3

4

𝑥
+1

=  −
3

1
= −3 

 

 

Clearly, we can’t always just substitute the value that 𝑥 tends to into the limit and evaluate- consider the limit lim
𝑥→0

sin 𝑥

𝑥
. 

Like the limit in example 2, it is indeterminate as by substituting in 𝑥 = 0 we get 
0

0
. To evaluate this type of limit we need 

a more precise method- we can use the Taylor series at 𝑥 = 0 (otherwise known as the Maclaurin series) to do this: 
 

Example 3: Using Taylor series, evaluate the limit lim
𝑥→0

sin 𝑥

𝑥
 

Find the Taylor series for sin 𝑥 about 𝑥 = 0 (this is also 
the Maclaurin series) sin 𝑥 = 𝑥 −

𝑥3

3!
+

𝑥5

5!
−

𝑥7

7!
+ ⋯ 

Divide by 𝑥 sin 𝑥

𝑥
= 1 −

𝑥2

3!
+

𝑥4

5!
−

𝑥6

7!
+ ⋯ 

Evaluate the limit using the series- all of the terms 
involving 𝑥 will tend to 0 lim

𝑥→0

sin 𝑥

𝑥
= lim

𝑥→0
( 1 −

𝑥2

3!
+

𝑥4

5!
−

𝑥6

7!
+ ⋯ ) = 1 

 
This method can also be used to evaluate more complex limits 
 

Example 4: Evaluate the limit lim
𝑥→0

ln(1+𝑥2)

𝑥2
 

Find the Taylor expansion for ln(1 + 𝑥2) 𝑓(𝑥) = ln 𝑥2 ⇒ 𝑓(𝑥 + 1) = ln( 𝑥2 + 1) 
𝑓(𝑥) = ln 𝑥2 ⇒ 𝑓(𝑎) = 0 

𝑓′(𝑥) =
2

𝑥
⇒ 𝑓′(𝑎) = 2 

𝑓′′(𝑥) =
−2

𝑥2
⇒ 𝑓′′(𝑎) = −2 

𝑓′′′(𝑥) =
4

𝑥3
⇒ 𝑓′′′(𝑎) = 4 

Taylor expansion:  

ln(𝑥2 + 1) = 2𝑥 −
2

2!
𝑥2 +

4

3!
𝑥3 + ⋯ 

ln(𝑥2 + 1) = 2𝑥 − 𝑥2 +
2

3
𝑥3 + ⋯ 

Substitute the Taylors expansion into the limit 

lim
𝑥→0

ln(1 + 𝑥2)

𝑥2
= lim

𝑥→0

2𝑥 − 𝑥2 +
2
3

𝑥3

𝑥2
 

= lim
𝑥→0

2

𝑥
− 1 +

2

3
𝑥 

=
2

0
= ∞ 

 
 
Series solutions of differential equations 
Taylor series can be used to approximate solutions of differential equations that can’t be solved using other techniques. 
These approximate solutions are in the form of series, and are hence called series solutions. 

• The series solution to the differential equation 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) is found using the Taylor series expansion in the 

form: 

𝑦 = 𝑦0 + (𝑥 − 𝑥0)
𝑑𝑦

𝑑𝑥
|𝑥0

+
(𝑥 − 𝑥0)2

2!
 
𝑑2𝑦

𝑑𝑥2
|𝑥0

+
(𝑥 − 𝑥0)3

3!

𝑑3𝑦

𝑑𝑥3
|𝑥0

+ ⋯  

• When 𝑥0 = 0, this reduces to the Maclaurin series 

𝑦 = 𝑦0 + 𝑥
𝑑𝑦

𝑑𝑥
|0 +

𝑥2

2!
 
𝑑2𝑦

𝑑𝑥2
|0 +

𝑥3

3!

𝑑3𝑦

𝑑𝑥3
|0 + ⋯ 

 

As we have the first order differential of the form 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) with initial conditions, we can calculate 

𝑑𝑦

𝑑𝑥
|𝑥0

 by 

substituting these initial conditions in. If we differentiate the original equation, we can obtain 
𝑑2𝑦

𝑑𝑥2
, and thus find 

the value at the initial conditions by substituting them in. Repeated differentiation and substitution allows us to 
find higher derivatives. 
 
Example 5: Use the Taylor series method to find a series solution, in ascending powers of (𝑥 − 1) up to and including 

(𝑥 − 1)2 of 
𝑑𝑦

𝑑𝑥
= 𝑒𝑥𝑦 + 𝑥3, given that when 𝑥 = 1, 𝑦 = 2. 

Substitute the given conditions into the original 
equation 

The given conditions are 𝑥0 = 1, 𝑦0 = 2, so  
𝑑𝑦

𝑑𝑥
|𝑥0

= 𝑒2 + 1 

Differentiate the original equation then substitute 
the given conditions in- remember to differentiate 
implicitly 

𝑑2𝑦

𝑑𝑥2
= 𝑦𝑒𝑥𝑦 + 𝑥

𝑑𝑦

𝑑𝑥
𝑒𝑥𝑦 + 3𝑥2 

Substituting in 𝑥0 = 1, 𝑦0 = 2,
𝑑𝑦

𝑑𝑥
|𝑥0

= 𝑒2 + 1 

𝑑2𝑦

𝑑𝑥2
= 2𝑒2 + (𝑒2 + 1)𝑒2 + 3 

Substitute into the Taylor series expansion formula- 
we cannot use the Maclaurin series one as 𝑥0 ≠ 0. 𝑦 = 2 + (𝑥 − 1)(𝑒2 + 1) +

(𝑥 − 1)2

2
(2𝑒2 + (𝑒2 + 1)𝑒2 + 3)

+ ⋯ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Second, and higher order differential equations can be solved in the same manner as you will be given extra initial 
conditions: 
 
Example 5: Use the Taylor series method to find a series solution, in ascending powers of 𝑥 up to and including the term 

𝑥3, of 
𝑑2𝑦

𝑑𝑥2 = 𝑦2 − cos 2𝑥, with initial conditions 𝑥 = 0, 𝑦 = 2 𝑎𝑛𝑑
𝑑𝑦

𝑑𝑥
= 1 

Substitute the initial conditions into the original 
equations 

The given conditions are 𝑥 = 0, 𝑦 = 2 𝑎𝑛𝑑
𝑑𝑦

𝑑𝑥
= 1, so  

𝑑2𝑦

𝑑𝑥2
= 4 − 1 = 3 

Differentiate the original equation implicitly and 
substitute the initial conditions in 

𝑑3𝑦

𝑑𝑥3
= 2𝑦

𝑑𝑦

𝑑𝑥
+ 2 sin 2𝑥 

𝑑3𝑦

𝑑𝑥3
= 2(2)(1) + 2(0) = 4 

Substitute into the Maclaurin expansion 
𝑦 = 2 + 𝑥 +

3

2
𝑥2 +

4

3!
𝑥3 + ⋯ 

𝑦 = 2 + 𝑥 +
3

2
𝑥2 +

2

3
𝑥3 + ⋯ 

 

Example 6 (Mixed Exercise): Write down the Taylor expansion of sin 3𝑥 and cos 3𝑥 about the point 
𝜋

4
 up to and including 

powers of 𝑥4.  

Hence, or otherwise, write the Taylor expansion of tan 3𝑥 about the point 
𝜋

4
 up to and including powers of 𝑥4. 

 

Use the expansion 

𝑓(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) +
𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2

+
𝑓′′′(𝑎)

3!
(𝑥 − 𝑎)3 + ⋯

+
𝑓(𝑟)(𝑎)

𝑟!
(𝑥 − 𝑎)𝑟 + ⋯ 

 

If 𝑓(𝑥) = sin 3𝑥, then the point of expansion 𝑎 =
𝜋

4
 

Find the first, second, third and fourth derivatives at 𝑎 
𝑓(𝑥) = sin 3𝑥 ⇒ 𝑓 (

𝜋

4
) =

√2

2
 

𝑓′(𝑥) = 3 cos 3𝑥 ⇒  𝑓′ (
𝜋

4
) = −

3√2

2
 

𝑓′′(𝑥) = −9 sin 3𝑥 ⇒ 𝑓′′ (
𝜋

4
) =

−9√2

2
 

𝑓′′′(𝑥) = −27 cos 3𝑥  ⇒ 𝑓′′′ (
𝜋

4
) =

27√2

2
 

𝑓′′′′(𝑥) = 81 sin 3𝑥  ⇒ 𝑓′′′′′ (
𝜋

4
) =

81√2

2
 

Substitute into the expansion- remember the factorials 
on the denominator sin 3𝑥 =

√2

2
−

3√2

2
(𝑥 −

𝜋

4
) −

9√2

4
(𝑥 −

𝜋

4
)2 +

9√2

4
(𝑥

−
𝜋

4
)3 +

27√2

16
(𝑥 −

𝜋

4
)4 + ⋯ 

Repeat the process with cos 3𝑥 
𝑓(𝑥) = cos 3𝑥 ⇒ 𝑓 (

𝜋

4
) =  −

√2

2
 

𝑓′(𝑥) = −3 sin 3𝑥 ⇒ 𝑓′ (
𝜋

4
) =

−3√2

2
 

𝑓′′(𝑥) = −9 cos 3𝑥 ⇒ 𝑓′′ (
𝜋

4
) =

9√2

2
 

𝑓′′′(𝑥) = 27 sin 3𝑥  ⇒ 𝑓′′′ (
𝜋

4
) =

27√2

2
 

𝑓′′′′(𝑥) = 81 cos 3𝑥  ⇒ 𝑓′′′′′ (
𝜋

4
) = −

81√2

2
 

Substitute into the expansion 
cos 3𝑥 = −

√2

2
−

3√2

2
(𝑥 −

𝜋

4
) +

9√2

4
(𝑥 −

𝜋

4
)2

+
9√2

4
(𝑥 −

𝜋

4
)3 −

27√2

16
(𝑥

−
𝜋

4
)4 + ⋯ 

We can use the formula tan 𝑥 =
sin 𝑥

cos 𝑥
 to find the 

expansion for tan 3𝑥 
tan 3𝑥 =

sin 3𝑥

cos 3𝑥
 

tan 3𝑥 = (
√2

2
−

3√2

2
(𝑥 −

𝜋

4
) −

9√2

4
(𝑥 −

𝜋

4
)2 +

9√2

4
(𝑥

−
𝜋

4
)3 +

27√2

16
(𝑥 −

𝜋

4
)4)

÷ −
√2

2
−

3√2

2
(𝑥 −

𝜋

4
)

+
9√2

4
(𝑥 −

𝜋

4
)2 +

9√2

4
(𝑥 −

𝜋

4
)3

−
27√2

16
(𝑥 −

𝜋

4
)4 

Using long division we obtain tan 3𝑥 = −1 + 6 (𝑥 −
𝜋

4
) − 18(𝑥 −

𝜋

4
)2 + 72(𝑥 −

𝜋

4
)3

− 270(𝑥 −
𝜋

4
)4 + ⋯ 
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