The t-formulae Cheat Sheet

This topic builds upon previous knowledge of trigonometric identities. The t-formulae are a group of formulae that enable trigonometric identities to be expressed in a different way. They are very useful in solving some trigonometric equations and evaluating certain integrals involving trigonometric functions by converting them to algebraic solutions, which also allows for easier modelling- a real life application of this is looking at blood pressure.

The t-formulae

The t-formulae allow trigonometric identities to be expressed in terms of a single variable, t. Unlike in parametric equations, t is defined as $t = tan \frac{\theta}{2}$, therefore we can write expressions involving $\sin\theta$, $\cos\theta$ and $\tan\theta$ in terms of it:

- When $t = \tan \frac{\theta}{2}$:
 - $\sin \theta = \frac{2t}{1+t^2}$
 - $\cos \theta = \frac{1+t^2}{1+t^2}$ $\tan \theta = \frac{2t}{1-t^2}$

These formulae are not given in the formula book, you must learn them and their derivations.

Example 1: Derive the t-formulae

Although we assume that $\frac{\theta}{2}$ is acute, the formulae do hold in general. This can be seen by algebraic proofs:

- $\sin \theta = 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} = 2 \tan \frac{\theta}{2} \cos^2 \frac{\theta}{2} = \frac{2 \tan \frac{\theta}{2}}{\sec^2 \frac{\theta}{2}} = \frac{2 \tan \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}} = \frac{2t}{1 + t^2}$ $\cos \theta = \cos^2 \frac{\theta}{2} \sin^2 \frac{\theta}{2} = \cos^2 \frac{\theta}{2} (1 \tan^2 \frac{\theta}{2}) = \frac{1 \tan^2 \frac{\theta}{2}}{\sec^2 \frac{\theta}{2}} = \frac{1 \tan^2 \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}} = \frac{1 t^2}{1 + \tan^2 \frac{\theta}{2}} = \frac{1 t^2}{1 + t^2}$
- And $\tan \theta$ can be proved exactly as before, using $\frac{\sin \theta}{\cos \theta}$ from the above forms in t.

```
Example 2: Given that \tan \frac{\theta}{2} = \frac{5}{8}, find the exact value of \sec \theta.
```

Substitute the value of $tan \frac{\theta}{2}$ into the t-formula for cos	$\cos\theta = \frac{1-t^2}{1+t_r^2}$
	$\cos\theta = \frac{1 - (\frac{5}{8})^2}{1 + (\frac{5}{8})^2} = \frac{39}{89}$
Use the identity that $\sec \theta = \frac{1}{\cos \theta}$	$\sec \theta = \frac{89}{39}$

Exam questions may also require you to use other trigonometric identities and give you a range that θ could be in, requiring you to select the appropriate answers- make sure you are confident with this!

Applying the t-formulae to trigonometric identities

The t-formulae can also be used to prove trigonometric identities

Example 3: Using the t-formulae, prove $\sin^2 \theta + \cos^2 \theta = 1$				
Recall the t-formulae for $\sin heta$ and $\cos heta$.	2t $1-$	t^2		
	$\sin\theta = \frac{1}{4(1+2)}, \cos\theta = \frac{1}{4(1+2)}$. 2		

	$1+t^2, \cdots + t^2$
Substitute the formulae into the equation	$\left(\frac{2t}{1+t^2}\right)^2 + \left(\frac{1-t^2}{1+t^2}\right)^2 = 1$
Simplify	$\frac{4t^2}{(1+t^2)^2} + \frac{1+t^4-2t^2}{(1+t^2)^2} = 1$
	$\frac{(1+t^2)^2}{(1+t^2)^2} = 1$ $\frac{(1+t^2)^2}{(1+t^2)^2} = 1$
	$(1+t^2)^2$

Solving trigonometric equations

The t-formulae can be used to change equations from being in terms of trigonometric functions of θ into algebraic equations in terms of t, which can then be solved algebraically. The substitution then has to be 'undone', finding the values of θ that correspond to the values of t. The substitution is only defined when $\tan \frac{\theta}{2}$ is defined- solutions of the form $\theta = (2n + 1)\pi$, $n \in \mathbb{Z}$ can't be found using this method.

ample 4: Using the t-formulae, s	olve '2 $\cot \theta - \sec \theta = 0$ ' for θ in the range $0 \le \theta \le 2\pi$.
Recall the required t-formulae	Using the substitution $t = \tan \frac{\theta}{2}$ $\cos \theta = \frac{1 - t^2}{1 + t^2} \Rightarrow \sec \theta = \frac{1 + t^2}{1 - t^2}$ $\tan \theta = \frac{2t}{1 - t^2} \Rightarrow \cot \theta = \frac{1 - t^2}{2t}$
Substitute in the t-formula and simplify	$2 \cot \theta - \csc \theta = 0$ $2 \left(\frac{1-t^2}{2t}\right) - \frac{1+t^2}{1-t^2} = 0$ $\frac{1-t^2}{t} - \frac{1+t^2}{1-t^2} = 0$ $\frac{(1-t^2)(1-t^2)}{t(1-t^2)} - \frac{t(1+t^2)}{t(1-t^2)} = 0$ $\frac{t^4 - t^3 - 2t^2 - t + 1}{t(1-t^2)} = 0$
Solve the quartic equation. For equations where it is a fraction=0, it is enough to solve the equation where the numerator is 0.	$t^4 - t^3 - 2t^2 - t + 1 = 0$ t = 2.081, t = 0.4805
Find the values of θ in the range required by substituting n the values we found for t .	$2.081 = \tan \frac{\theta}{2}$ $1.123 = \frac{\theta}{2}$ $2.246 = \theta$ As $\tan \frac{x}{2}$ has a period of 2π (not π !), another solution could b found by adding 2π to the solution already found, however this is outside of the range required by the question $\theta = 2.246$ $0.4805 = \tan \frac{\theta}{2}$

0.448 = $0.896 = \overline{\theta}$

So the two solutions are $\theta = 2.246$, $\theta = 0.896$

Modelling with trigonometry

which can be simplified with the t-formulae.

Differentiate the displacement with respect to time to find the velocity	$v = \frac{ds}{dx} = 3\sin x + 8\cos 2x$
Substitute in the t-formulae and the double angle formula $\cos 2\theta = 1 - 2\sin^2 \theta$	$v = 3\left(\frac{2t}{1+t^2}\right) + 8(1-2(\frac{2t}{1+t^2})^2)$
We have deliberately taken time as <i>x</i> so we don't confuse it with our t-formulae	
Simplify the equation	$v = \frac{6t}{1+t^2} + 8 - 16(\frac{4t^2}{(1+t^2)^2})$ $v = \frac{6t}{1+t^2} + 8 - \frac{64t^2}{(1+t^2)^2}$ $v = \frac{6t(1+t^2) + 8(1+t^2)^2 - 64t^2}{(1+t^2)^2}$ $v = \frac{6t + 6t^3 + 8 + 16t^2 + 8t^4 - 64t^2}{(1+t^2)^2}$ $v = \frac{8t^4 + 6t^3 - 48t^2 + 6t + 8}{(1+t^2)^2}$
To find the values of t where the particle is stationary, we need to set $v = 0$. Solve the equation (polynomial solver or plot graph on graphics calculator)	$0 = 8t^{4} + 6t^{3} - 48t^{2} + 6t + 8$ t = 1.9708, t = 0.5074, t = -0.3471, t = -2.881
Substitute t back into $t = \tan \frac{\theta}{2}$	$1.9708 = \tan \frac{\theta}{2}$ $\frac{\theta}{2} = 1.101$ $\theta = 2.2024$ $0.5074 = \tan \frac{\theta}{2} \Longrightarrow \theta = 0.9391$ $-0.3471 = \tan \frac{\theta}{2} \Longrightarrow \theta = -0.6682$ $-2.881 = \tan \frac{\theta}{2} \Longrightarrow \theta = -2.4734$
Find the values of $ heta$ within the range required	$\theta = -0.6682 + 2\pi = 5.615$ $\theta = -2.4734 + 2\pi = 3.809$ $\theta = 0.9391, \theta = 2.2024, \theta = 3.809,$ $\theta = 5.615$

🕟 www.pmt.education 🛛 🖸 💿 🗗 💟 PMTEducation

Edexcel FP1

Trigonometric functions are incredibly useful in modelling, especially models that are periodic. More advanced situations can be modelled by adding and subtracting multiples of trigonometric functions,

Example 5: The displacement of a particle moving in a straight line, s m, at time x seconds is given by $s = \frac{5}{2} - 3\cos x + 4\sin 2x$, $0 \le x \le 2\pi$. Find all values of x for which the particle is stationary.

