Inequalities Cheat Sheet

Graphical method For an inequality $f(x) < g(x)$, you can sketch the graphs and then observe which parts of the graph satisfies the ine the left-hand side to right-hand side and solving the equal whether an algebraic or graphical method should be used	equality. The critical values can be found by equating ion. Make sure to check if the question specifies	Modulus inequalities For inequalities involving a modulus sign Example 4: Solve $ x + 3 < 2x + 5$
Example 2: Solve $\frac{3}{2x+1} \ge x + 3$ using the graphical method.		
Sketch the graphs $y = \frac{3}{2x+1}$ and $y = x + 3$ on the same scale		Sketch $y = x + 3 $ and $y = 2x + 5$
Find the points of intersection by equating LHS to RHS	$\frac{3}{2x+1} = x+3$	
Solve the equation to find the critical values	3 = (x + 3)(2x + 1) $3 = 2x^{2} + x + 6x + 3$ $2x^{2} + 7x = 0$ x(2x + 7) = 0 $\therefore CV = 0, -\frac{7}{2}$	Find the critical values by solving both and $-(x + 3) = 2x + 5$
Note the vertical asymptotes	$x = 0$ and $x = -\frac{1}{2}$	Using your graph and critical values fo
Select the intervals according to the graph. We want to find the interval for which the red curve, $y = \frac{3}{2x+1}$, is above the blue line, $y = x + 3$	$x < -\frac{7}{2}$ or $-\frac{1}{2} \le x \le 0$	identify the x-coordinate of the inters find out what values of x satisfy the in we want the interval in which the red blue.
Example 3: Solve $\frac{2x}{x+6} > \frac{2}{x-4}$ using the graphical method.	y	Example 5: Solve $ x^2 - 9 - 2 > 2x + 4$ Rearrange the terms so that the modu one side, and other terms are on the c of the inequality sign
Sketch the graphs $y = \frac{2x}{x+6}$ and $y = \frac{2}{x-4}$ on the same scale	(-1, -0.4) $(6, 1)$ $(-1, -0.4)$ $(6, 1)$ $(-1, -0.4)$ $(-10$ (-1) $(-10$ (-1) $(-10$ (-1) $(-10$ (-1)	Sketch $y = x^2 - 9 $ and $y = 2x + 6$
Find the points of intersection by equating LHS to RHS	$\frac{2x}{x+6} = \frac{2}{x-4}$	
		Find the critical values by solving $x^2 - 9 = 2x + 6$
RHS	$\frac{1}{x+6} = \frac{1}{x-4}$ $2x(x-4) = 2(x+6)$ $2x^{2} - 8x = 2x + 12$ $2x^{2} - 10x - 12 = 0$ $x^{2} - 5x - 6 = 0$	
RHS	$\frac{1}{x+6} = \frac{1}{x-4}$ $2x(x-4) = 2(x+6)$ $2x^{2} - 8x = 2x + 12$ $2x^{2} - 10x - 12 = 0$ $x^{2} - 5x - 6 = 0$ $(x-6)(x+1) = 0$	$x^2 - 9 = 2x + 6$ Find the remaining critical values by so
RHS Solve the equation to find the critical values	$\frac{1}{x+6} = \frac{1}{x-4}$ $2x(x-4) = 2(x+6)$ $2x^2 - 8x = 2x + 12$ $2x^2 - 10x - 12 = 0$ $x^2 - 5x - 6 = 0$ $(x-6)(x+1) = 0$ $\therefore CV = -1, 6$	$x^2 - 9 = 2x + 6$ Find the remaining critical values by so

In this chapter, you will learn to solve inequalities with algebraic fractions or modulus, by using either the algebraic or graphical approach.

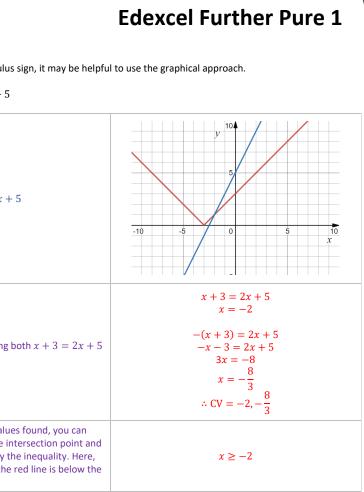
Algebraic Methods

For inequalities which involve an algebraic fraction, for example,

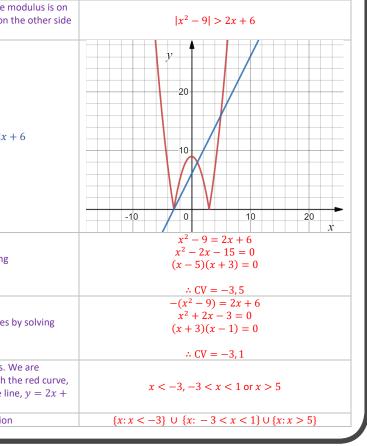
 $\frac{x}{x+3} < x$ We cannot simply multiply x by (x + 3) and cancel out x, as this will only solve for one of the critical values.

To solve these inequalities:

- We first multiply the whole inequality with the square of the denominator, which is $(x + 3)^2$ in this case. We use the squared denominator to ensure that it is always positive, as multiplying the whole inequality by a negative number will cause the inequality sign to be turned, and wrong intervals will be chosen.
- Then, we rearrange the terms so that all terms are on one side of the sign and the other side is 0.
- Next, we solve the inequality for the critical values.
- Using the critical values and by sketching a graph, we can find the intervals which fulfil the inequality.


Strict and Non-strict Inequalities

- Strict inequalities are in the form of a < b or a > b. This means that a is either lesser than or greater . than b, but a and b are not equal.
- Non-strict inequalities are in the form of $a \leq b$ or $a \geq b$. This means that a is "lesser than or equals to" b or "greater than or equals to b".
- For strict inequalities, our critical values are not included in the solution, so we use the signs "<" or ٠ ">"
- For non-strict inequalities, our critical values are also included in the intervals, so we use the signs "≤" or "≥".


Example 1: Solve $\frac{x}{x+3} < x, x \neq -3$.

of each algebraic fractions.

Multiply both sides of the inequality with the squared denominator, $(x + 3)^2$	$\frac{x}{x+3}(x+3)^2 < x(x+3)^2$	
Simplify the terms on each side	$x(x+3) < x(x+3)^2$	
Move all terms to one side	$0 < x(x+3)^2 - x(x+3)$	
Expand the brackets	$0 < x(x^{2} + 6x + 9) - (x^{2} + 3x)$ $0 < x^{3} + 6x^{2} + 9x - x^{2} - 3x$	
Simplify the inequality	$0 < x^3 + 5x^2 + 6x$	
Factorise to find the critical values	$0 < x(x^{2} + 5x + 6)$ 0 < x(x + 2)(x + 3) $\therefore CV = -3, -2, 0$	
Sketch the graph for the equation $y = x(x + 2)(x = 3)$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Select the appropriate intervals. We are looking for values of x for which $y > 0$. Since we only want values for "greater than" and not "equal to", our critical values are not in the interval.	-3 < x < -2 or $x > 0$	

. Write you answer in set notation

