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This chapter aims to build upon the vectors you learnt in Core Pure 1. We will look at the cross product and its applications, 
vector equations of lines, direction ratios and cosines. Vectors are used in modelling in a variety of ways – from 3D printing 
to locating and modelling speeds. 

 
The vector product 
From Core Pure 1 you should recall the scalar (or dot) product of two vectors. It takes two vectors a and b and is defined 
as: 

• 𝒂 ⋅ 𝒃 = |𝒂||𝒃|cos𝜃 
Where θ is the angle between the vectors a and b. As expected from its name, the scalar product always outputs a scalar 
(number). It is also useful to have a product that outputs a vector. 
For two vectors a and b, the vector (or cross) product is defined as: 

• 𝒂 × 𝒃 = |𝒂||𝒃|sin𝜃𝐧̂  
Again, θ denotes the angle between a and b and n̂ denotes a unit vector perpendicular to both a and b (remember this 
means that the dot products a.n̂ and b.n̂ will always be 0!).  

• Intuitively, as we know |𝒂||𝒃|sin𝜃 is a positive scalar quantity (since 0 ≤ 𝜃 ≤ 180°) and n̂ is a vector, the cross 
product will also be a vector and will have a magnitude |𝒂||𝒃|sin𝜃. 

•  It is incredibly important to note that unlike the scalar product, the vector product is not commutative. Most 
of the time, 𝒂 × 𝒃 will not equal 𝒃 × 𝒂. However, 𝒃 × 𝒂 = −𝒂 × 𝒃. To convince ourselves of this, if a screw is 
turned from a to b then it would move in the direction of n̂. If it is reversed, and the screw is turned from b to 
a then it would move in the direction of -n̂. 

 
Calculating the vector product 
Although the vector product can be found by simply substituting a and b into the relevant formula in the formula book, 
we will prove the formula to aid understanding. 

Example 1: For 𝒂 = (

𝑎1
𝑎2
𝑎3
)  and 𝒃 = (

𝑏1
𝑏2
𝑏3

) prove that 𝒂 × 𝒃 = (𝑎2𝑏3 − 𝑎3𝑏2)𝒊 + (𝑎3𝑏1 − 𝑎1𝑏3)𝒋 + (𝑎1𝑏2 − 𝑎2𝑏1)𝒌 

 𝒂 × 𝒃 = (𝑎1𝒊 + 𝑎2𝒋 + 𝑎3𝒌) × (𝑏1𝒊 + 𝑏2𝒋 + 𝑏3𝒌) 

Using the distributive property of the vector product: 
𝒂 × (𝒃 + 𝒄) = (𝒂 × 𝒃) + (𝒃 × 𝒄) 

𝒂 × 𝒃 = 𝑎1𝑏1(𝒊 × 𝒊) + 𝑎1𝑏2(𝒊 × 𝒋) + 𝑎1𝑏3(𝒊 × 𝒌)
+ 𝑎2𝑏1(𝒋 × 𝒊) + 𝑎2𝑏2(𝒋 × 𝒋)
+ 𝑎2𝑏3(𝒋 × 𝒌) + 𝑎3𝑏1(𝒌 × 𝒊)
+ 𝑎3𝑏2(𝒌 × 𝒋) + 𝑎3𝑏3(𝒌 × 𝒌) 

Simplify the vector products of the unit vectors along the 
axis- parallel vectors have a vector product of 0 (as sin(0°) 
= 0). Use the right-hand rule to find which direction n̂ acts 
in, as it is not always intuitive. 

= 𝑎1𝑏2𝒌+ 𝑎1𝑏3(−𝒋) + 𝑎2𝑏1(−𝒌) + 𝑎2𝑏3(𝒊) + 𝑎3𝑏1(𝒋)
+ 𝑎3𝑏2(−𝒊) 

Collecting like terms = (𝑎2𝑏3 − 𝑎3𝑏2)𝒊 + (𝑎3𝑏1 − 𝑎1𝑏3)𝒋 + (𝑎1𝑏2 − 𝑎2𝑏1)𝒌 

An alternative method can also be used:  

Determinant method: 
𝒂 × 𝒃 = |

𝒊 𝒋 𝒌
𝑎1 𝑎2 𝑎3
𝑏1 𝑏2 𝑏3

| 

Expand the determinant of the 3x3 matrix 𝒂 × 𝒃 = 𝒊 |
𝑎2 𝑎3
𝑏2 𝑏3

| − 𝒋 |
𝑎1 𝑎3
𝑏1 𝑏3

| + 𝒌 |
𝑎1 𝑎2
𝑏1 𝑏2

| 

Expand the determinants of the 2x2 matrices = (𝑎2𝑏3 − 𝑎3𝑏2)𝒊 + (𝑎3𝑏1 − 𝑎1𝑏3)𝒋 + (𝑎1𝑏2 − 𝑎2𝑏1)𝒌 

Example 2: Evaluate (
3
4
6
) × (

2
5
4
) 

 (3𝒊 + 𝟒𝒋 + 𝟔𝒌) × (𝟐𝒊 + 𝟓𝒋 + 𝟒𝒌) 

Using the distributive property of the vector product: 
𝒂 × (𝒃 + 𝒄) = (𝒂 × 𝒃) + (𝒃 × 𝒄) 

= 6(𝒊 × 𝒊) + 15(𝒊 × 𝒋) + 12(𝒊 × 𝒌) + 8(𝒋 × 𝒊)
+ 20(𝒋 × 𝒋) + 16(𝒋 × 𝒌)
+ 12(𝒌 × 𝒊) + 30(𝒌 × 𝒋)
+ 24(𝒌 × 𝒌) 

Simplify and collect like terms = −14𝒊 + 7𝒌 

 
Example 3: Find a unit vector perpendicular to (5𝒊 + 3𝒋 + 8𝒌) and (𝒊 + 7𝒋 + 2𝒌) 

We know that the vector product results in a 
perpendicular vector so we must evaluate that first |

𝒊 𝒋 𝒌
5 3 8
1 7 2

| = 𝒊 |
3 8
7 2

| − 𝒋 |
5 8
1 2

| + 𝒌 |
5 3
1 7

| 

 = (6 − 56)𝒊 − (10 − 8)𝒋 + (35 − 3)𝒌 
= −50𝒊 − 2𝒋 + 32𝒌 

To obtain a unit vector (a vector with a magnitude of 1) 
with the same direction as this vector we must divide the 
vector by its magnitude 

|−50𝒊 − 2𝒋 + 32𝒌| = √(−50)2 + (−2)2 + 322 

= 42√2 

Thus the unit vector is 1

42√2
(−50𝒊 − 2𝒋 + 32𝒌) 

Example 4: Using the vector product, find the sin of the acute angle between 𝒂 = (
3
4
6
) and 𝒃 = (

2
5
4
) 

Rearrange the cross product formula to find the angle 𝒂 × 𝒃 = |𝒂||𝒃|sin𝜃 𝐧̂   

sin𝜃 =
|𝒂 × 𝒃|

|𝒂||𝒃|
 

Calculate the magnitudes- since we know the cross 
product from example 2 we can substitute it in here 

|𝒂| = √32 + 42 + 62 = √61 

|𝒃| = √22 + 52 + 42 = 3√5 

|𝒂 × 𝒃| = √(−14)𝟐 + 72 = 7√5 

Substitute into our formula for sinθ 
sin𝜃 =

7√5

√61 × 3√5
 

= 0.2988 
 

Finding areas 
The vector product can also be used to find the areas of triangles and parallelograms. 
 
The simplest triangles to consider are those with a vertex at the origin. Considering the formula: 

 Area of OAB= 
𝟏

𝟐
𝒂𝒃 sinθ, we can rewrite this using vectors with |a| and |b| denoting the  

lengths of sides OA and OB respectively. Thus, we obtain: 

Area of triangle OAB  =
1

2
|𝒂||𝒃|sin𝜃 =

1

2
|𝒂 × 𝒃| 

 
However, not all triangles have a vertex at the origin, so we need to develop a formula that works for any triangle.  
Let a triangle have its vertices at points A, B and C, with position vectors a, b and c respectively. 

Again, using the normal formula for area of a triangle, Area of ABC = 
1

2
|𝑨𝑩||𝑨𝑪|sin𝜃. Rewriting this 

using vectors (the length of AB is the same as |b-a|), we obtain: 

                         Area of ABC = 
1

2
|𝒃 − 𝒂||𝒄 − 𝒂|sin𝜃 

=
1

2
|(𝒃 − 𝒂) × (𝒄 − 𝒂)| 

=
1

2
|(𝒃 × 𝒄) − (𝒃 × 𝒂) − (𝒂 × 𝒄) + (𝒂 × 𝒂)| 

=
1

2
|(𝒃 × 𝒄) + (𝒄 × 𝒂) + (𝒂 × 𝒃)| 

=
1

2
|(𝒂 × 𝒃) + (𝒃 × 𝒄) + (𝒄 × 𝒂)| 

 
 Areas of parallelograms can be calculated in a similar way. Any parallelogram can be split up into two congruent 
triangles (there is a line of symmetry on the diagonal), so the area of the parallelogram is twice the area of the respective 
triangle. 
 Area of parallelogram ABCD, with position vectors a, b, c and d 
 =Area of ABD + Area of BCD 
 = 2 x ABD 
 = |( 𝒂 × b) + (b × d) + (d × 𝒂)| 
 
 Area of parallelogram OABC, A and B have position vectors a and b 
 =| 𝒂 × b | 
 
The scalar triple product 
The triple product is used to find volumes of 3D shapes, namely a parallelepiped (solid with 6 parallelogram shaped faces 
that looks like a sheared cube) and a tetrahedron. For 𝒂 =  𝑎1𝒊 + 𝑎2𝒋 + 𝑎3𝒌,𝒃 = 𝑏1𝒊 + 𝑏2𝒋 + 𝑏3𝒌 𝑎𝑛𝑑 𝒄 = 𝑐1𝒊 + 𝑐2𝒋 +
𝑐3𝒌, the scalar triple product is defined as: 

𝒂 ⋅ (𝒃 × 𝒄) =  𝑎1(𝑏2𝑐3 − 𝑏3𝑐2) + 𝑎2(𝑏3𝑐1 − 𝑏1𝑐3) + 𝑎3(𝑏1𝑐2 − 𝑏2𝑐1) 

                    = |

𝑎1 𝑎2 𝑎3
𝑏1 𝑏2 𝑏3
𝑐1 𝑐2 𝑐3

| 

 
Example 5: For 𝒂 = 2𝒊 − 2𝒋 + 5𝒌, 𝒃 = 3𝒊 + 2𝒋 − 𝒌 and 𝒄 = 4𝒊 + 𝒋 + 3𝒌, find 𝒂 ⋅ (𝒃 × 𝒄) 
 

Calculate 𝒃 × 𝒄.  You could also calculate the scalar triple 
product as a determinant, shown above 𝒃 × 𝒄 = |

𝒊 𝒋 𝒌
3 2 −1
4 1 3

| = 7𝒊 − 13𝒋 − 5𝒌 

Find the scalar product of the vector just found with a. 𝒂. (𝒃 × 𝒄) = (2𝒊 − 2𝒋 + 5𝒌). ( 7𝒊 − 13𝒋 − 5𝒌) 
                    = 14 + 26 − 25 = 15 

 
There are two more important points to note about the scalar triple product: 

• 𝒂 ⋅ (𝒃 × 𝒄) = 𝒃 ⋅ (𝒄 × 𝒂) = 𝒄 ⋅ (𝒂 × 𝒃)  -  the scalar triple product is cyclic 

• 𝒂 ⋅ (𝒂 × 𝒑) = 𝒂 ⋅ (𝒑 × 𝒂) = 𝟎 for any vector p 
 
If three non-parallel sides of a parallelepiped are given by vectors a, b and c, then the volume of the parallelepiped is 
given by |𝒂 ⋅ (𝒃 × 𝒄)|. 
 This is because the volume of the parallelepiped is given by (𝑎𝑟𝑒𝑎 𝑜𝑓 𝑏𝑎𝑠𝑒) × ℎ, where h is the perpendicular distance 
between the base and top of the shape. The area of the base is |𝒃 × 𝒄|, as shown in a previous section, and h is given by, 
𝑂𝐴cos𝜃, where θ is the angle between the base’s perpendicular and a. The volume is |𝒃 × 𝒄|𝑂𝐴𝑐𝑜𝑠𝜃, which is 
equivalent to |𝒃 × 𝒄||𝒂|𝑐𝑜𝑠𝜃 and by the definition of the scalar product is |𝒂 ⋅ (𝒃 × 𝒄)|. 

If three non-coplanar sides of a tetrahedron are given by a, b, and c then the volume of the tetrahedron is given by 

  
1

6
|𝒂 ⋅ (𝒃 × 𝒄)|. This is derived in a similar way to the parallelepiped. 

Example 6: Find the volume of the parallelepiped ABCDEFGH where vertices A, B, D, E have coordinates (2,-1,0),               
(-2,-1,-2), (1,-1,-1) and (1,0,1) respectively. 

Find the vectors AB, AD and AE AB= (−2𝒊 − 𝒋 − 2𝒌) − (2𝒊 − 𝒋) = −4𝒊 − 2𝒌 
AD=(𝒊 − 𝒋 − 𝒌) − (2𝒊 − 𝒋) = −𝒊 − 𝒌 
AE=(𝒊 + 𝒌) − (2𝒊 − 𝒋) = −𝒊 + 𝒋 + 𝒌 

Substitute into the triple scalar product formula:         
|𝒂 ⋅ (𝒃 × 𝒄)| 

Volume=|(−4𝒊 − 2𝒌) ⋅ (( −𝒊 − 𝒌) × ( −𝒊 + 𝒋 + 𝒌))| 

              =|−2| = 2 units3 

 

 
 
 
 
 
 
 
 
 
 
 

Vectors Cheat Sheet  

 

Straight lines 
The vector product can also be used to write a vector equation of a line without the need for a parameter. 
To form the vector equation of a line, we need a position vector a of a point of the line, 
A, a position vector r to a generic point on the line, R, and a vector that is parallel to the 
line, b. The vector AR is parallel to b, so 𝑨𝑹× 𝒃 = 𝟎. AR is found by r-a, so the 
line is denoted by the equation: 

• (𝒓 − 𝒂) × 𝒃 = 𝟎 
• Or, equivalently, 𝒓 × 𝒃 = 𝒂 × 𝒃 

Example 7: find the vector equation of the line through the points (3,7,3) and (2,-1,2) in the 

 form(𝒓 − 𝒂) × 𝒃 = 𝟎 

 

Find the direction vector of the line- any multiple 
(including 1) is parallel to the line we are finding 

(2𝒊 − 𝒋 + 𝟐𝒌)− (3𝒊 + 𝟕𝒋 + 𝟑𝒌) = (−𝒊 − 𝟖𝒋 − 𝒌) 

Substitute into the equation- you can use either of the 
vectors given in the question as the position vector (𝑟 − (

3
7
3
)) × (

−1
−8
−1

) = 0 

 
As seen in Year 2 Pure, the direction vector can be used to find the angles that the line makes with each of the axes, α, β 
and γ denote the angles with the x, y and z axes respectively. If a line is parallel to a vector 𝒂 = 𝑥𝒊 + 𝑦𝒋 + 𝑧𝒌 then the 
direction ratios of the line are in the form x:y:z, and the direction cosines of the line are: 

cos 𝛼 =
𝑥

|𝒂|
, cos 𝛽 =

𝑦

|𝒂|
 and cos 𝛾 =

𝑧

|𝒂|
. 

 These are denoted l, m and n. 𝑙2 +𝑚2 + 𝑛2 = 1 
 

Example 8: Find the direction cosines l, m and n of the line (𝑟 − (
2
5
7
)) × (

−4
3
1
) = 0 

Using the direction vector of the line (in this case 

(
−4
3
1
)), substitute into the equations for the direction 

cosines 

l= 
−4

√(−4)2+32+12
=

−4

√26
 

m= 
3

√(−4)2+32+12
=

3

√26
 

n=
1

√(−4)2+32+12
=

1

√26
 

 
Solving geometric problems 
There is a wide range of questions that can be asked of you in exams, which will involve both planes and lines in 3D. 
These will be multi-step problems but will only require the skills that you already know- read the question carefully and 
work out what you can.  
 

Example 9: Find the shortest distance between the skew lines with equations 𝑟1 = (
−2
1
−1

) + 𝜆 (
2
3
−1

)  and 𝑟2 = (
1
−1
2
) + 𝜇 (

−1
2
4
) 

 

As in any distance problem, the shortest distance 
between two non-intersecting lines is a line that is 
perpendicular to both lines. When a question is asking 
for you to find a perpendicular to two vectors, the 
vector products should be the first thing you try. 

𝒏 = (
2
3
−1

) × (
−1
2
4
) = (

14
−7
7
) 

Now we have a direction vector for the shortest 
distance. Let Q and P denote the points of each line. We 
need to find the distance between them. 

𝑸𝑷 = (
1
−1
2
)− (

−2
1
−1

) = (
3
−2
3
) 

We have a direction vector for the vector showing the 
shortest distance (n) and a vector connecting the two 
lines (QP). We need to project the connecting vector QP 
in the direction of the shared perpendicular- to do this 
we find the scalar product of the vector QP with the 
UNIT vector in the direction of the common 
perpendicular- this way we are not affecting the length 
of the distance between the two points in our 
projection!  

|(
14
−7
7
)| = √142 + (−7)2 + 72 = 7√6 

So, the unit vector is given by: 

𝒏 =
1

7√6
(
14
−7
7
) =

1

√6
(
2
−1
1
) 

And the projection (i.e. shortest distance) is given by: 

(
3
−2
3
) ⋅

1

√6
(
2
−1
1
) =

11

√6
 

units 

 
As demonstrated in the example above, the shortest distance between two skew lines with equations 𝑟 = 𝑎 + 𝜆𝑏, 𝑟 =
𝑐 + 𝜇𝑑, where λ and μ are scalars, is given by: 

|
(𝒂 − 𝒄) ⋅ (𝒃 × 𝒅)

|𝒃 × 𝒅|
| 
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