

www.pmt.education <a>D© PMTEducation

As seen in Year 2 Pure, the direction vector can be used to find the angles that the line makes with each of the axes, α , β and y denote the angles with the x, y and z axes respectively. If a line is parallel to a vector $\mathbf{a} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ then the direction ratios of the line are in the form x:v:z, and the direction cosines of the line are:

There is a wide range of questions that can be asked of you in exams, which will involve both planes and lines in 3D. These will be multi-step problems but will only require the skills that you already know- read the question carefully and

nce between the skew line	s with equations $r_1 = \begin{pmatrix} -2\\1\\-1 \end{pmatrix} + \lambda \begin{pmatrix} 2\\3\\-1 \end{pmatrix}$ and $r_2 = \begin{pmatrix} 1\\-1\\2 \end{pmatrix} + \mu \begin{pmatrix} -1\\2\\4 \end{pmatrix}$
shortest distance nes is a line that is en a question is asking o two vectors, the rst thing you try.	$\boldsymbol{n} = \begin{pmatrix} 2\\3\\-1 \end{pmatrix} \times \begin{pmatrix} -1\\2\\4 \end{pmatrix} = \begin{pmatrix} 14\\-7\\7 \end{pmatrix}$
for the shortest points of each line. We en them.	$\boldsymbol{QP} = \begin{pmatrix} 1\\-1\\2 \end{pmatrix} - \begin{pmatrix} -2\\1\\-1 \end{pmatrix} = \begin{pmatrix} 3\\-2\\3 \end{pmatrix}$
ne vector showing the or connecting the two ne connecting vector QP rpendicular- to do this e vector QP with the ne common not affecting the length o points in our	$\begin{vmatrix} \begin{pmatrix} 14\\ -7\\ 7 \end{pmatrix} \end{vmatrix} = \sqrt{14^2 + (-7)^2 + 7^2} = 7\sqrt{6}$ So, the unit vector is given by: $\mathbf{n} = \frac{1}{7\sqrt{6}} \begin{pmatrix} 14\\ -7\\ 7 \end{pmatrix} = \frac{1}{\sqrt{6}} \begin{pmatrix} 2\\ -1\\ 1 \end{pmatrix}$ And the projection (i.e. shortest distance) is given by: $\begin{pmatrix} 3\\ -2\\ 3 \end{pmatrix} \cdot \frac{1}{\sqrt{6}} \begin{pmatrix} 2\\ -1\\ 1 \end{pmatrix} = \frac{11}{\sqrt{6}}$
	units

As demonstrated in the example above, the shortest distance between two skew lines with equations $r = a + \lambda b$, $r = a + \lambda b$.

$$\frac{|(a-c)\cdot(b\times d)|}{|b\times d|}$$

