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Further Pure 3: Introduction 
 
The aim of this text is to provide a sound and readily accessible account of the items 
comprising the Further Pure Mathematics unit 3.  
 
The chapters are arranged in the same order as the five main sections of the unit.  The first 
chapter is therefore concerned with series expansions and the evaluation of limits and improper 
integrals. The second covers polar coordinates and their use in curve sketching and evaluation 
of areas. 
 
The subject of differential equations forms a major part of this unit and Chapters 3, 4 and 5 are 
devoted to this topic.  Chapter 3 introduces the subject and deals mainly with analytical 
methods for solving differential equations of first order linear form.  In addition to the standard 
method of solution using an integrating factor, this chapter introduces the method based on 
finding a complementary function and a particular integral.  This provides useful preparation 
for Chapter 5 where the same technique is used for solving second order differential equations. 
 
With the advent of modern computers, numerical methods have become an essential practical 
tool for solving the many differential equations which cannot be solved by analytical methods.  
This important subject is covered in Chapter 4 in relation to differential equations of the form 

( )f , .y x y′ =   It should be appreciated that, in practice, the numerical methods described would 
be carried out with the aid of a computer using an appropriate program.  The purpose of the 
worked examples and exercises in this text is to exemplify the principles of the various 
methods and to show how these methods work.  Relatively simple functions have been chosen, 
as far as possible, so that the necessary calculations with a scientific calculator are not unduly 
tedious. 
 
Chapter 5 deals with analytical methods for solving second order differential equations and this 
requires some knowledge of complex numbers. Part of the required knowledge is included in 
the Further Pure 1 module, which is a prerequisite for studying this module, and the remainder 
is included in the Further Pure 2 module which is not a prerequisite. For both simplicity and 
completeness therefore, Chapter 5 begins with three short sections on complex numbers which 
cover, in a straightforward way, all that is required for the purpose of this chapter. These 
sections should not cause any difficulty and it is hoped that they will be found interesting as 
well as useful. Those who have already studied the topics covered can either pass over this 
work or regard it as useful revision. 
    
The main methods for solving second order linear differential equations with constant 
coefficients are covered in Sections 5.5. and 5.6.  These methods sometimes seem difficult 
when first met, but students should not be discouraged by this.  Useful summaries are 
highlighted in the text and confidence should be restored by studying how these are applied in 
the worked examples and by working through the exercises. 
 
The text concludes with a short section showing how some second order linear differential 
equations with variable coefficients can be solved by using a substitution to transform them to 
simpler forms.   
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Chapter 1: Series and Limits 
 
1.1  The concept of a limit  

1.2 Finding limits in simple cases  

1.3 Maclaurin�s series expansion  

1.4 Range of validity of a series expansion  

1.5 The basic series expansions  

1.6 Use of series expansions to find limits  

1.7 Two important limits  

1.8 Improper integrals  

 
 
In this chapter, it is shown how series expansions are used to find limits and how improper 
integrals are evaluated.  When you have completed it you will: 

 
• have been reminded of the concept of a limit; 

 
• have been reminded of methods for finding limits in simple cases; 

 
• know about Maclaurin�s series expansion; 

 
• be able to use series expansions to find certain limits; 

 
• know about the limits of ek xx −  as x →∞  and lnkx x  as 0x → ; 

 
• know the definition of an improper integral; 

 
• know how to evaluate improper integrals by finding a limit. 
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1.1 The concept of a limit 

You will have already met the idea of a limit and be familiar with some of the notation used.  If 
x is a real number which varies in such a way that it gets closer and closer to a particular value 
a  , but is never equal to a  , then this is signified by writing .x a→   More precisely, the 
variation of x  must be such that for any positive number, δ  , x  can be chosen so that 
0 x a δ< − <  , no matter how small δ  may be. 

When a function ( )f x  is such that f ( )x l→  when x a→  , where l  is finite, the number l  is 
called the limit or limiting value of f ( )x  as x a→  .  This may be expressed as 

lim f ( )
x a

x l
→

=  . 

The statements x →∞   and f ( )x →∞  mean that x and f ( )x  increase indefinitely � i.e. that 
their values increase beyond any number we care to name, however large.  Note that you 
should never write x = ∞  or f ( )x = ∞  , because ∞  is not a number. 
 
Unless stated or implied otherwise, x a→  means that x  can approach a  from either side.  
Occasionally however, it may be necessary to distinguish between x  approaching a  from the 
right, so that x a>  always and x  approaching a  from the left, so that x a<  always.  The 
notation x a→ +  is used to signify that x  approaches a  from the right, and x a→ −  to signify 
that x  approaches a  from the left.  The two cases are illustrated in the diagram below. 
 
 

 
 
 
The distinction between the two cases is important, for instance, when we consider the 
behaviour of 1

x  as 0x →  .  When 0x → + , 1
x →∞  ; but when 0x → − , 1

x →−∞  . 

 
The use of +  or −  attached to a  is unneccessary when it is clear from the context that the 
approach to a  can only be from one particular side.  For example, since ln x is defined only for 

0x >  , one can write ln x →−∞  as 0x →  without ambiguity: the fact that x  approaches 0  
from the right is implied in this case so it is unneccessary to write 0x → +  . 
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1.2 Finding limits in simple cases 

In some simple cases, it is easy to see how a function f ( )x  behaves as x  approaches a given 
value and whether it has a limit.  Here are three examples. 
 

1. As 0x →  , 1 1
2 2

x
x

+ →
−

 because 1 1x+ →  and 2 2x− →  as 0x →  . 

2. As π
2x →  , sin 11 cos

x
x →−

 , because sin 1x →  and cos 0x →  as π
2x →  . 

3. As 1x → +  , 11
x
x

+ → −∞
−

 , because 1 2x+ → +  and 1 0x− → −  as 1x → +  . 

 
The first two of the above examples can be expressed as: 
 

0
1 1lim 2 2x

x
x→

+ =
−

   and   
π
2

sinlim 11 cosx

x
x→
=

−
 

 
However, it would be wrong to state that 
 

1
1lim 1x

x
x→ +

+ = −∞
−

 , 

 
because a limit has to be finite.  The function 11

x
x

+
−

 does not have a limiting value as 1x → +  . 

 
Another example, not quite so straightforward as the examples above, is that of finding the  
 
limit as x →∞  of 1f ( ) 1 2

xx x
+=
−

 . 

 
As x →∞  , 1 x+ →∞  and 1 2x− → −∞  , but the expression ∞

−∞
 is meaningless.  This 

difficulty can be overcome by first dividing the numerator and denominator of f ( )x  by x  , 
giving  
 

1 1
f ( ) 1 2

xx

x

+
=

−
 . 

 
It can now be seen that 1f ( ) 2x →

−
 as x →∞  because 1 0x →  .  The limiting value of f ( )x  is 

therefore 1
2−  . 
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The working for this example can be presented more concisely as follows. 
 

1 11f ( ) 1 2 1 2
x xx x

x

++= =
− −

 . 

 

As x →∞ , 1 0x →  .  Hence 

 
1 1lim f ( ) 2 2x

x
→∞

= = −
−

 . 

 
There are many instances where the behaviour of a function is much more difficult to 
determine than in the cases considered above.  For example, consider 
 

2f ( ) lnx x x=  
 
as 0x →  .  When 0x →  , 2 0x →  and ln x →−∞  .  It is not obvious therefore what happens 
to the product of 2x  and ln x  as 0x →  . 
 
Consider also the function 
 

f ( )
1 1

xx
x

=
− −

 . 

 

When 0x →  , 0f ( ) 0x →  which is an indeterminate form having no mathematical meaning.  

Although f ( )x  does not have a value at 0x =  , it does approach a limiting value as 0x →  .  
Investigating with a calculator will produce the following results, to five decimal places. 
 

f (0.1) 1.94868=  , f ( 0.1) 2.04881− =  , 
f (0.01) 1.99499=  , f ( 0.01) 2.00499− =  , 

f (0.001) 1.99950=  , f ( 0.001) 2.00050− =  . 
 

It can be seen from these results that f ( )x  appears to be approaching the value 2 as 0x → +  
and 0x → −  ; the limit is, in fact, exactly 2 as you would expect. 
 
However, no matter how convincing the evidence may seem, a numerical investigation of this 
kind does not constitute a satisfactory mathematical proof.  Limits in these more difficult cases 
can often be found with the help of series expansions.  The series expansions that we shall use 
are introduced in the next three sections of this chapter. 
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Exercise 1A 
 
1.  Write down the missing values, indicated by ∗  , in the following. 
 

(a)  As 0x →  , 2
2

x
x

+ →∗
−

           ,          (b)  As 2x →  , 11
x
x

+ →∗
−

 , 

 

(c)  As π
2x → −  , tan

x
x →∗  , (d)  As π

2x → +  , tan
x

x →∗  . 

 
 

2.  Explain why ln x  does not have a limiting value as 0x →  . 
 
 
3.  Write down the values of the following limits. 
 

(a)  
π
2

lim 1 sinx

x
x→ +

 ,  (b)  
1

lnlim 1 lnx
x

x→ +
 . 

 
 

4.  Find the values of the following. 
 

(a)  3 2lim 2 3x
x
x→∞

+
+

 ,  (b)  lim 2 3x
x

x→∞ +
 , 

 

(c)  
2

2
1lim

1 2x
x x

x x→∞

+ −
− +

 ,  (d)  
2

3
2lim
3x

x
x→∞

+
+

 . 

 
 

5.  Use a calculator to investigate the behaviour of 0.01 lnx x  as 0x →  .  You will find it 
difficult to guess from this investigation what happens as 0x →  .  Later in this chapter, it 
will be shown that the function tends to zero. 
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1.3 Maclaurin�s series expansion 
 
You will already be familiar with the binomial series expansion for (1 )nx+  : 
 

2 3( 1) ( 1)( 2)(1 ) 1 ...2! 3!
n n n n n nx nx x x− − −+ = + + + +  . 

 
Many other functions, such as ex  , ln(1 )x+  , sin x  and cos x  can also be expressed as series in 
ascending powers of x  .  Such expansions are called Maclaurin series. 
 
 
The Maclaurin series for a function f ( )x  is given by: 
 

( )
2 3f (0) f (0) f (0)f ( ) f (0) f (0) ... ...2! 3! !

r
rx x x x xr

′′ ′′′′= + + + + + +  , 

 
where f ′  , f ′′  , f ′′′  , � denote the first, second, third, � derivatives of f , respectively, and ( )f r  
is the general derivative of order r  . 
 
 
To derive this, the following assumptions are made. 
 
     (i) The function f ( )x  can be expressed as a series of the form 
 

2 3 4
0 1 2 3 4f ( ) ... ...r

rx a a x a x a x a x a x= + + + + + + +  ,  
 

where 0a  , 1a  , 2a  , 3a  , 4a  , � ra  , �are constants. 
 
     (ii) The series can be differentiated term by term. 
 
     (iii) The function f ( )x  and all its derivatives exist at 0x =  . 
 
Succesive differentiations of each side of the equation under (i) gives 
 

2 3
1 2 3 4f ( ) 2 3 4 ...x a a x a x a x′ = + + + +  , 

2
2 3 4f ( ) 2 2 3 3 4 ...x a a x a x′′ = + × + × +  , 

                                              3 4f ( ) 2 3 2 3 4 ...x a a x′′′ = × + × × +  , 
 

and, in general, 
 

( )f ( ) 2 3 ... ( 1)r
rx r ra= × × × − × +  terms in x  , 2x  , 3x � . 
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Putting 0x =  in the expressions for f ( )x  and its derivatives, we see that 
 

0 f (0)a =  ,  1 f (0)a ′=  

2
f (0) f (0)

2 2!a ′′ ′′
= =  ,  

3
f (0) f (0)
2 3 3!a ′′′ ′′′

= =
×

 ,  

 
and, in general, 
 

( ) ( )f (0) f (0)
1.2.3...( 1) !

r r

ra r r r= =
−

 . 

 
Substituting these values into the series in (i) above gives the Maclaurin series of f ( )x  . 
 
 
The statement that f ( )x  can be expressed as a Maclaurin series, subject to conditions (i) � (iii) 
above being satisfied, is often referred to as Maclaurin�s theorem. 
 
 
The Maclaurin series has an interesting history.  It is named in honour of Colin Maclaurin, a 
notable Scottish mathematician.  Born in 1698, he was a child prodigy who entered university 
at the age of 11 and became a professor at the age of 19.  He was personally acquainted with 
Newton and made significant contributions to the development of Newton�s pioneering work in 
Calculus.  The series which bears Maclaurin�s name was not discovered by Maclaurin � a fact 
that he readily acknowledged � but is a special case of a more general expansion called 
Taylor�s series (see exercise 1B, question 6). 
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Example 1.3.1 
 
Use Maclaurin�s theorem to obtain the expansion of ln (1 )x+ as a series in ascending powers  
of x  . 
 
Solution 
 
In this case 
 

f ( ) ln (1 ) f (0) ln1 0x x= + ⇒ = =  . 
 

Also,  

            1f ( ) f (0) 11x x
′ ′= ⇒ =

+
 , 

             2
1f ( ) f (0) 1

(1 )
x

x
′′ ′′= − ⇒ = −

+
 , 

  3
2f ( ) f (0) 2

(1 )
x

x
′′′ ′′′= ⇒ =

+
 , 

          (4) (4)
4

2 3f ( ) f (0) 2 3
(1 )

x
x
×= − ⇒ = − ×
+

 , 

    
(5) (5)

5
2 3 4f ( ) f (0) 2 3 4
(1 )

x
x

× ×= ⇒ = × ×
+

 , 

 
and so on. 
 
Substituting these values into the general form of the Maclaurin series gives 
 

2
3 4 52 2 3 2 3 4ln (1 ) ...2! 3! 4! 5!

xx x x x x× × ×+ = − + − + −  

  
2 3 4 5

...2 3 4 5
x x x xx= − + − + −  . 

 
The general term of this series is most readily obtained by inspecting the first few terms.  It is 

1( 1)
r

r x
r

+−  , where 1r =  gives the first term, 2r =  gives the second  term, 3r =  gives the third 

term, and so on.  Hence 
 

2 3
1ln (1 ) ... ( 1) ...2 3

r
rx x xx x r
++ = − + − + − +  , 

 
where r  can take the values 1, 2, 3� . 
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Example 1.3.2 
 
Obtain the Maclaurin series expansion of sin x . 
 
Solution 
 
In this case 
 

    f ( ) sin f (0) 0x x= ⇒ =  , 
  f ( ) cos f (0) 1x x′ ′= ⇒ =  , 

 f ( ) sin f (0) 0x x′′ ′′= − ⇒ =  , 
  f ( ) cos f (0) 1x x′′′ ′′′= − ⇒ = −  , 
   (4) (4)f ( ) sin f (0) 0x x= ⇒ =  , 
  (5) (5)f ( ) cos f (0) 1x x= ⇒ =  , 

 
and so on. 
 
Substituting these values into the general form of the Maclaurin series gives 
 

3 5
sin 3! 5!

x xx x= − + −  � . 

 
By inspecting the first few terms of the series, the general term can be identified.  It is 
 

2 1
( 1) (2 1)!

r
r x

r
+

−
+

 

 
where 0r =  gives the first term, 1r =  gives the second term, 3r =  gives the third term, and so 
on.  Hence 
 

3 5 2 1
sin ... ( 1)3! 5! (2 1)!

r
rx x xx x r

+
= − + − + − +

+
 � , 

 
where r can take the values 0, 1, 2, � . 
 
The general term could also be expressed as 
 

2 1
1( 1) (2 1)!

r
r x

r
−

−−
−

 , 

 
but with this form 1r =  gives the first term, 2r =  gives the second term, 3r =  gives the third 
term and so on.  The admissible values of r  for this form of the general term are therefore       
1, 2, 3, � . 
 
Whenever the general term of a series is given, the admissible values of r  should be stated. 
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Exercise 1B 
 
1.  Obtain the Maclaurin series expansion of ex  , up to and including the term in 3x  .  Write 
down an expression for the general term of the series. 
 
 
2.  By replacing x  by x−  in the series expansion for ex  , obtained in the previous question, 
write down the Maclaurin series for e x−  , up to and including the term in 3x  .  Show that the 

general term is given by ( 1) !
r

r x
r−  , where 0r = ,1, 2 � . 

 
 
3.  Use Maclaurin�s theorem to show that  
 

2 4 6
cos 1 2! 4! 6!

x x xx = − + − +� . 

 
Write down an expression for the general term of the series. 
 
 
4.  Use Maclaurin�s theorem to show that 
 

2 31 11 x x xx = + + + +
−

� . 

 
 

5.  Use Maclaurin�s theorem to obtain the first three non-zero terms in the expansion of 
 

e ef ( ) 2
x x

x
−+=  . 

 
Give the general term. 
 
 
6.  Suppose that f ( )x a+ , where a  is a constant, can be expanded as a series in ascending 
powers of x .  Suppose also that the series can be differentiated term by term and that f and all 
its derivatives exist at x a= .  By using a similar method to that used to derive the Maclaurin 
series of f ( )x , show that 
 

2 3f ( ) f ( )f ( ) f ( ) f ( ) 2! 3!
a ax a a a x x x′′ ′′′′+ = + + + +� . 

 
 
[The above expansion of f ( )x a+  is called Taylor�s series.  It is named after Brook Taylor, an 
eminent English mathematician who was a close contemporary of Maclaurin.  Maclaurin�s 
series can be obtained immediately from Taylor�s series by putting 0a =  .  An application of 
Taylor�s series will be found later in section 4.5]. 
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1.4  Range of validity of a series expansion 
 
The Maclaurin series expansion of a function f ( )x  is not necessarily valid for all values of x  .  
A simple example will show this.  Consider 
 

2 31 11 x x xx = + + + +
−

� 

 
(see exercise 1B, question 4).  For 2x =  , the left-hand side of this equation has the value -1.  
However, for 2x =  , the right-hand side is 2 31 2 2 2+ + + +� , which is clearly not equal to -1.  
The above expansion is therefore not valid for 2x =  . 
 
To determine the values of x  for which the expansion is valid is not too difficult in this case.  
As you may have noticed already, the expansion is an infinite geometric series with the first 
term 1 and common ratio x  .  The sum , ( )nS x  , of the first n  terms is given by 
 

1 11 1( ) 1 1 1
n n

n
x xS x x x x

+ +−= = −
− − −

. 

Hence,          

11 ( )1 1
n

n
xS xx x

+
= +

− −
. 

 

For the expansion to be valid, ( )nS x  must have the same value as 1
1 x−  in the limit when 

n →∞  .  The requirement for this is that 
1

01
nx

x
+
→

−
 as n →∞ , and this occurs only when 

1x < .  We conclude therefore that the Maclaurin series expansion of 1
1 x−  is valid provided 

1x <  . 
 
In general, suppose that the Maclaurin series of f ( )x  is given by 
 

f ( ) ( ) ( )n nx S x R x= +  ,  
 

where ( )nS x  is the sum of the first n  terms of the series and ( )nR x  is the sum of all the 
remaining terms.  For a particular value of x  , the series expansion will be valid provided that 

( ) 0nR x →  as n →∞  . 



klmGCE Further Mathematics (6370)                        Further Pure 3 (MFP3) Textbook  
 

 
15 

In the case when 
 

1f ( ) 1x x=
−

 , 

 
it was fairly easy to show that 
 

1
( ) 1

n

n
xR x x

+
=

−
 ; 

 

this enabled the values of x  for which the series expansion of 1
1 x− is valid to be determined.  

Usually, however, finding an expression for ( )nR x  is much more difficult and beyond the 
scope of an A-level course.  In what follows therefore, ranges of validity will be stated without 
proof.   
 
Use of series expansions in approximations 
 
For values of x  within the range of validity of a series expansion of a function, an 
approximation to the value of the function can be obtained by using just the first few terms of 

the series.  For example, for the expansion of 1
1 x−  discussed above, substitution of 0.2x =  

into the series and using the first five terms gives 
 

1 1 0.2 0.04 0.008 0.0016 1.24961 x ≈ + + + + =
−

 . 

 
Substituting 0.2x =  into 1

1 x−  , the exact value is found to be 1.25.  The error in the 

approximate value is therefore small, and it can be made smaller still by using more terms of 
the series. 
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1.5 The basic series expansions 
 
The following expansions are considered basic ones from which others can be derived. 
 
 

   

2 3
e 1 ... ...2! 3! !

r
x x x xx r= + + + + + +  

 

              
3 5 2 1

sin ... ( 1) ...3! 5! (2 1)!
r

rx x xx x r
+

= − + − + − +
+

 

 

        

2 4 2
cos 1 ... ( 1) ...2! 4! (2 )!

r
rx x xx r= − + − + − +  

 
2 3

1ln (1 ) ... ( 1) ...2 3
r

rx x xx x r
++ = − + − + − +  

 

       ( )2( 1)(1 ) 1 ... ...2!
n rn n nx nx x xr

−+ = + + + + +  

 

 
 

( 0r = , 1, 2, �) 
 

 
( 0r = , 1, 2, �) 

 
 

( 0r = , 1, 2, �) 
 
 
 
 

( 1r = , 2, 3 �) 
 

 
 

( 0r = , 1, 2, �) 

 
The first three of the above expansions are valid for all real values of x .  The expansion of 
ln(1 )x+  is valid only when 1 1x− < ≤ .   
 
The expansion of (1 )nx+  is the binomial series and is valid for any real value of n  when 

1 1x− < <  .  However, when n  is a positive integer, the series is finite, being a polynomial of 
degree n ; it is therefore valid for all real values of x in this case.  One other special case, 

worthy of mention, is that when 1x = the binomial expansion is still valid if 1
2n ≥ −  . 

 
All the above basic series, together with ranges of values of x for which they are valid, are 
given in the AQA formulae booklet. 
 
It is important to appreciate that in the series expansions for sin x and cos x , x  is a real 
number, not an angle.  However, if the values of these trigonometric functions are needed for 
any particular real value of x , they can be found using a calculator set to radian mode.  For 
example, you will find that sin1 0.84147...=  . 
 
The basic expansions are particularly useful in finding the Maclaurin series expansions of 
other, related functions, such as ln (1 2 )x− and e cosx x .  This usually proves easier than using 
Maclaurin�s theorem directly because finding the required derivatives can be troublesome.  In 
general, it is advisable to use Maclaurin�s theorem only when specifically requested to do so.  
The examples which follow show how the basic expansions can be used. 
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Example 1.5.1 
 
Obtain the first three non-zero terms in the series expansions of 
 

(a)  2sinx x ,   (b)  1
3

1

(1 2 )x+
 . 

 
In each case, give the range of values of x  for which the expansion is valid. 
 
Solution 
 
(a)  Using the series for sin x  with x  replaced by 2x  gives 
 

2 3 2 5
2 2 ( ) ( )sin ...3! 5!

x xx x x x⎛ ⎞
= − + −⎜ ⎟

⎝ ⎠
 

 
7 11

3 ...6 120
x xx= − + −  . 

 
       The expansion is valid for all values of 2x  and hence for all x . 
 

(b)               

1
3

1
3

1 (1 2 )
(1 2 )

x
x

−
= +

+
 

   2
1 4

1 3 31 (2 ) (2 ) ...3 1 2x x
− ×−

= − + +
×

 

   22 81 ...3 9x x= − + +  . 

 

       The expansion is valid for 1 2 1x− < <  , which gives 1 1
2 2x− < < . 
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Example 1.5.2 
 
(a)  Expand ln (1 2 )x−  as a series in ascending powers of x , up to and including the term in 3x . 
 
(b)  Determine the range of validity of this series. 
 
Solution 
 
(a)  Replacing x  by 2x− in the series for ln (1 )x+  gives  
 

2 3( 2 ) ( 2 )ln (1 2 ) 2 ...2 3
x xx x − −− = − − + −  

        2 382 2 ...3x x x= − − − −  . 

 
(b)  Since the series for ln (1 )x+  is valid for 1 1x− < ≤ , the series expansion above will be 
       valid when 1 2 1x− < − ≤ . 
 

       Now  11 2 2 1 2x x x− < − ⇒ < ⇒ < ,  and  12 1 1 2 2x x x− ≤ ⇒ − ≤ ⇒ − ≤ . 

 

       Hence the range of validity of the series expansion of ln(1 2 )x−  is 1 1
2 2x− ≤ < . 

 
Example 1.5.3 
 
Obtain the expansion of e cosx x  up to, and including, the term in 3x . 
 
Solution 
 

2 3 2
e cos 1 ... 1 ...2! 3! 2!

x x x xx x⎛ ⎞⎛ ⎞= + + + + − +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

             
2 3 2

1 ... 1 ...2 6 2
x x xx⎛ ⎞⎛ ⎞= + + + + − +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

                           
2 3 2 2

1 ... 1 ...2 6 2 2
x x x xx x⎛ ⎞ ⎛ ⎞= + + + + − + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

        

3
1 ...

3
xx= + − +  . 



klmGCE Further Mathematics (6370)                        Further Pure 3 (MFP3) Textbook  
 

 
19 

Example 1.5.4 
 
The function f ( )x  is defined by 
 

1
2f ( ) (1 2 ) ln (1 3 )x a x x= + − +  , 

 
where a  is a constant.  When f ( )x  is expanded as a series in ascending powers of x , there is 
no term in x . 
 
(a)  Find the value of a . 
 
(b)  Obtain the first two non-zero terms in the expansion. 
 
(c)  Determine the range of values of x  for which the expansion of f ( )x  is valid. 
 
Solution 
 
(a)  Using the standard expansions, 
 

  

2
2

1 1
(3 )1 2 2f ( ) 1 (2 ) (2 ) ... 3 ...2 2! 2

xx a x x x
⎛ ⎞×− ⎛ ⎞⎜ ⎟= + + + − − +⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟
⎝ ⎠

 

   ( ) 2
21 9... 3 ...2 2

xa ax ax x⎛ ⎞= + − + − − +⎜ ⎟
⎝ ⎠

 

     ( ) 29 1( 3) ...2 2a a x a x= + − + − +  . 

 
       Since there is no term in x , 3a =  . 
 
(b)  Putting 3a =  in the above expansion, 
 

2f ( ) 3 3 ...x x= + +  . 
 

(c)  The expansion of 
1
2(1 2 )x+  is valid for 1 2 1x− < <  , which gives 1 1

2 2x− < < .  The  

expansion of ln (1 3 )x+  is valid for 1 3 1x− < ≤  , which gives 1 1
3 3x− < ≤ . 

For the expansion of f ( )x  to be valid, the expansions of both 
1
2(1 2 )x+  and ln (1 3 )x+  

must be valid.  Hence the required range of validity is 1 1
3 3x− < ≤  .  Any x  in this interval 

will also be within the interval 1 1
2 2x− < <  . 
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Exercise 1C 
 
1.  Use a calculator to evaluate cos1 to six decimal places. 
 
 
2.  (a) Use a calculator to evaluate sin 0.5  to four decimal places. 
 
      (b) Verify that using the first three terms of the series expansion for sin x  with 0.5x =  
       gives the same value to four decimal places. 
 
 
3.  Obtain the first three non-zero terms of the series expansions of 
 

(a)  sin 2 ( 0)x xx ≠  , (b)  cos3x  , (c)  2
3(1 2 )

x

x+
 , 

(d)  3
1

e x  , (e)  2ln(1 )x x+ + . 

 
4.  Expand each of the following functions as series in ascending powers of x  , up to and 

including the term in 3x . 
 

(a)  ln (1 )x− ,    (b)  3e (1 2 )x x− ,    (c)  2e 2sinx x− + ,    (d) ln (1 )
1 3

x
x
+

+
. 

 
5.  For each of the series expansions in question 4, determine the range of values of x  for 
     which the expansion is valid. 
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1.6 Use of series expansions to find limits 

In this section, we shall show by means of examples how series expansions can be used to find 
limits. 
 
Consider first the problem mentioned in section 1.2 of obtaining the limit, as 0,x →          
of the function 

 ( )f
1 1 .

xx
x

=
− −

 

Using the binomial expansion, 

 

( )

( ) ( ) ( )

1
2

2 3

2 3

1 1
1 1 1 1 3

1 2 2 2 2 21 2 2! 3!
1 1 11 .2 8 16

x x

x x x

x x x

− = −

×− ×− ×−
= + − + − + − +

= − − − +

…

…

 

Hence,  ( ) ( )2 3

2 3

2

f
1 1 11 1 2 8 16

1 1 1
2 8 16

1 .1 1 1
2 8 16

xx
x x x

x
x x x

x x

=
− − − − +

=
+ + +

=
+ + +

…

…

…

 

 
It can now be seen that when 0,x →  all the terms in the denominator of the above expression, 
except the first, tend to zero.  Hence, 

 ( ) 10 2

1lim f 2.
x

x
→

= =  

Notice that after simplifying the denominator in the expression for ( )f ,x  the common factor x 
in the numerator and denominator was cancelled � this is a key step common to many 
problems in which series expansions are used to determine limits.  If common factors are not 
cancelled, then as 0x →  both numerator and denominator will tend to zero giving the 

indeterminate form 0 .0  
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Example 1.6.1 

Find  
0

2sin sin 2lim .cos cos 2x

x x
x x→

−
−

 

 
Solution 
 

 

( ) ( )

( ) ( )

( ) ( )
( )

3 53 5

2 42 4

3 5 3 5

2 4
2 4

3 5

2 2
2 23! 5! 3! 5!

2sin sin 2
cos cos 2 2 2

1 12! 4! 2! 4!

1 1 4 42 23 60 3 15
21 1 22 24 3

 terms in  and higher

x xx xx x
x x

x x x xx x

x x x x x x

x x x x

x x

⎛ ⎞⎛ ⎞ ⎜ ⎟− + − − − + −⎜ ⎟ ⎜ ⎟⎝ ⎠− ⎝ ⎠=
− ⎛ ⎞⎛ ⎞ ⎜ ⎟− + + − − + −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

− + − − − + −
=

⎛ ⎞− + + − − + −⎜ ⎟
⎝ ⎠

+=

… …

… …

… …

… …

2 4

3

2

 powers
3  terms in  and higher powers2

 terms in  and higher powers .3  terms in  and higher powers2

x x

x x

x

+

+=
+

 

As 0,x →  the numerator tends to zero and the denominator tends to 3 .2   Hence, 

 30 2

2sin sin 2 0lim 0.cos cos 2x

x x
x x→

− = =
−
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Example 1.6.2 

(a) Find the first three non-zero terms in the expansion of  ( )ln 1
x

x+
as a series in ascending 

powers of x. 
 

(b) Hence find  ( )0

1 1lim .
ln 1x xx→

⎛ ⎞
−⎜ ⎟+⎝ ⎠

 

 
 
 

  

( ) 2 3

2

12

22 2

2 2

2

ln 1
2 3

1

1 2 3

1 2 3

1 21 2 3 2! 2 3

1 2 3 4

1 .2 12

x x
x x xx

x x

x x

x x x x

x x x

x x

−

=
+ − + −

=
− + −

⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞− ×−= − − + − + − + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= + − + +

= + − +

…

…

…

… … …

…

…

 

 
 

 

( ) ( )

( )
( )

2

2

1 1 1 1
ln 1 ln 1

1 11 12 12
1 1

2 12
1 1
2 12
1  as 0.2

x
x xx x

x xx
x xx

x

x

⎛ ⎞
− = −⎜ ⎟+ +⎝ ⎠

= + − + −

= − +

= − +

→ →

…

…

…

 

It is interesting to note that when ( )
1 10 ,  and .

ln 1
x xx
→ + →∞ →∞

+
  Also, when 

( )
1 10 ,  and .

ln 1
x xx
→ − → −∞ → −∞

+
  This example shows that, in both cases, the 

difference between ( )
1 1 and 

ln 1 xx+
 tends to the finite value 1 .2  

Solution 

(b) 

(a) 
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Exercise 1D 

1. Use series expansions to determine the following limits: 

 (a) 
0

e 1lim ,
x

x x→

−     (b) 
0

sin 3lim ,
x

x
x→

    (c) 
2

0
lim ,1 cos 2x

x
x→ −

     (d) ( )
0

ln 1
lim .1 cosx

x x
x→

+
−

 

 
 

2. (a) Show that ( ) 2 31 1ln 1 sin .2 6x x x x+ = − + +…  

 (b) Hence find  ( )
20

ln 1 sin
lim .
x

x x
x→

+ −
 

 
 

3. Find  
0

2 2lim .
x

x
x→

+ −  

 
 
4. (a) By using the identity ln 22 e ,x x≡  obtain the first three terms in the expansion of 2x  as a 

series in ascending powers of x.  Give the coefficients of x and x2 in terms of ln 2.  

 (b) Find  
0

2 1lim .
3 1

x

xx→

−
−

 

 
 

5. Find  ( )
1
22lim 3 .

x
x x x

→∞

⎡ ⎤
+ −⎢ ⎥

⎣ ⎦
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1.7 Two important limits 

Two interesting limits are introduced in this section.  They are of some importance because 
they occur quite frequently in applications of mathematics. 
 
• The limit of e  as k xx x− →∞  
 
Consider first the function 2e .xx −   When x becomes very large, x2 becomes very large and e x−  
becomes very small.  It is not immediately obvious what will happen to the product 2e ,xx −  but 
if its behaviour is investigated numerically using a calculator it will be seen that 2e xx −  is very 
small for large values of x.  Evidently, therefore, the effect of e x−  in making 2e xx −  smaller is 
stronger than the effect of x2 making it larger.  This is a particular case of the following general 
result: 
 
 
 
 
To prove this, note first that when 0k =  and 0x ≠  the expression ek xx −  becomes simply e ,x−  
which tends to zero as .x →∞   The result therefore holds in this case.  Also, when 0,k <  both 

kx  and e x−  tend to zero as x →∞  so the product ek xx − must also tend to zero.  Therefore the 
result holds in this case too. 
 
Now suppose that 0.k >   Let n be an integer such that .n k>   Using the series expansion for 
e ,x  

 

( ) ( )

( ) ( )

2 1 2

2 2
1

e
e

1 2! ! 1 ! 2 !

.
1

2! ! 1 ! 2 !

k
k x

x

k

n n n

k n

n
n n

xx

x
x x x xx n n n

x
x x xx x n n n

−

+ +

−

−
− −

=

=
+ + + + + + +

+ +

=
+ + + + + + +

+ +

… …

… …

 

But ,n k>  so k n−  is negative.  Hence, when ,x →∞  0.k nx − →   In the denominator of the 

expression above, all the terms are positive and all those after the 1
!n  term tend to infinity as 

.x →∞   Hence, when x →∞  the denominator of the expression tends to infinity.  It follows, 
therefore, that 

 0e 0.k xx − → =
∞

 

Note that no matter how large the number k may be, e 0k xx − →  as .x →∞   For large values of 
x, the influence of e x−  is therefore stronger than any power of x. 
 
 

when ,x →∞  e 0k xx − →  for any real number k 
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• The limit of ln  as 0kx x x→  
 
Consider the function ln  where 0.kx x k >   Here x must be restricted to positive values 
because otherwise ln x  is not defined. 
 
When 0, 0kx x→ →  but ln .x →−∞  Therefore, it is not obvious what happens to the product 

ln  as 0.kx x x →  It will be proved that: 
 
 
 
 

Let e .
y
kx

−
=   Then when , 0.y x→∞ →   Also e  and ln .k y yx x k

−= = −   Hence, 

 
( )

( )
0

lim ln lim e

1 lim e .

k y

x y

y

y

yx x k

yk

−

→ →∞

−

→∞

⎛ ⎞= −⎜ ⎟
⎝ ⎠

= −
 

Using the limit established for ek xx −  with 1k =  (and x replaced by y, of course), 

 ( )lim e 0.y

y
y −

→∞
=  

Hence, ( )
0

lim ln 0,k

x
x x

→
=  as required. 

 
Note that for small values of x, lnkx x  will be negative because ln 0 for 0 1.x x< < <   Hence 
the limit zero is approached through negative values.  The result can therefore be expressed 
more fully as: 
 
 
 
Note that as x approaches zero, the effect of ln x  making lnkx x  large and negative is weaker 
than the effect of kx  making the product lnkx x  smaller, no matter how small k may be. 
 
 
Example 1.7.1 

Show that ( )2 2lim e 0.x

x
x −

→∞
=  

 
Solution 
 
Put 2 .x y=   Then x →∞  corresponds to .y →∞   Hence, 

when 0,x →  ln 0kx x →  for all 0k >  

ln 0kx x → −  when ( )0 0x k→ + >  
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( )

( )

2
2 2

2

lim e lim e4

1 lim e4
0.

x y

x y

y

y

yx

y

− −

→∞ →∞

−

→∞

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

=

=

 

 
 
Example 1.7.2 

Find ( )2
0

lim 1 1 ln ,
x

x x
→

⎡ ⎤+ −⎣ ⎦  where 0.x >  

 
Solution 
  

 
( ) ( )2 2

2

1 1 ln 2 ln

2 ln ln .

x x x x x

x x x x

⎡ ⎤+ − = +⎣ ⎦

= +
 

When 20, ln 0 and ln 0.x x x x x→ → →   Hence, 

 ( )2
0

lim 1 1 ln 0.
x

x x
→

⎡ ⎤+ − =⎣ ⎦  

 
 
 
Example 1.7.3 

(a)  Express xx  in the form e ,a  where 0.x >  

(b)  Hence show that 1 as 0.xx x→ →  
 
 
Solution 
 
` Let e .x ax =   Then 
 ln ln e

ln .

x ax
x x a

=
⇒ =

 

 Therefore lne .x x xx =  
 
 When 0, ln 0.x x x→ →   Hence, as 00, e 1.xx x→ → =  
 

(a) 

(b) 
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Exercise 1E 

1. Find the following limits. 

 (a)  1lim ,
exx

x
→∞

+     (b) 
3

2lim ,
e xx

x
→∞

    (c) ( )3lim 1 1 e ,x

x
x −

→∞
⎡ ⎤+ −⎣ ⎦     (d) 10lim e ,x

x
x

→−∞
 

 (e) 
0

lim ln 2 ,
x

x x
→

 (f) ( )2

0
lim ln ,

x
x x x

→ +
+  (g) ( ) ( )

1
lim 1 ln 1 .
x

x x
→ −

− −  

 
 

2. By setting e ,yx =  show that ln 0 as .x xx → →∞  

 
 
3. The function f is defined by 

  
( )3

1f ( ) , 0.
1 ln

x x
x x

= >
+

 

 Show that f ( )  as 0.x x→−∞ →  
 
 
4. (a) Show that the curve with equation e xy x −=  has a stationary point at ( )11, e .−  

 (b) Sketch the curve. 
 
 
5. (a) Show that the curve with equation ln ,  where 0,y x x x= >  has a stationary point at 

( )1 1e , e .− −−  

 (b) Sketch the curve. 
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1.8 Improper integrals 

Consider the integral 1 20

1 d .
1

I x
x

∞
=

+∫   This gives the area A of the region R1 in the first 

quadrant enclosed by the curve 2
1 ,

1
y

x
=

+
 the x-axis and the y-axis.  The region R1 is shown in 

the diagram below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
However, because the upper limit of the integral is infinite, R1 is unbounded and it is not clear 
that A will have a finite value. 
 
To investigate this, the upper limit of I1 is replaced by c.  Then 

 

1 20

1
0

1

1 d
1

tan

tan .

c

c

I x
x

x

c

−

−

=
+

⎡ ⎤= ⎣ ⎦

=

∫
 

Now let c →∞  and it can be seen that 1
π
2I →  because 1 πtan .2c− →   The area A of the region 

R1 is therefore finite having the value π .2  

 

 y 

 x

 1 

 O 

 R1 
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Consider next the integral 1
2

4

2
0

1 d .I x
x

= ∫  This gives the area of the region R2 enclosed by the 

curve 1
2

1 ,y
x

=  the x-axis, the y-axis and the ordinate 4.x =   The region R2 is shown in the 

diagram below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
However, R2 is also an unbounded region because as 0.y x→∞ →   To determine whether or 
not the area of R2 is finite, first replace the lower limit by c.  Then 

 

1
2

1
2

1
2

4

2

4

1 d

2

4 2 .

c

c

I x
x

x

c

=

⎡ ⎤= ⎢ ⎥⎣ ⎦

= −

∫

 

Now let 0c →  and it can be seen that 2 4.I →  The area of R2 is therefore equal to 4. 
 
The two integrals I1 and I2 are special cases of what are called improper integrals.  The formal 
definition is as follows. 
 
 
 
 
 
 
 
 
 
In this chapter, only improper integrals of types (1) and (2) will be considered. 

 R2 

 x

 y 

 O  4 

The integral f ( ) d
b

a
x x∫  is said to be improper if 

 (1) the interval of integration is infinite,  
or (2) ( )f x  is not defined at one or both of the end points and ,x a x b= =  

or  (3) ( )f x  is not defined at one or more interior points of the interval a x b≤ ≤ .
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The integral I1 above is of type (1) because the interval of integration is infinite.  The integral I2 

is of type (2) because 1
2

1
x

 is not defined at 0.x =  

 
The integrals I1 and I2 were evaluated by finding appropriate limits and a similar procedure is 
used for all improper integrals.  However, in some cases it will be found that no limit exists. In 
such cases, it is said that the integral is divergent or  does not exist. 
 
 
Exercise 1F 

1. Explain why each of the following integrals is improper. 

 (a) 
1

2
1 d ,

1
x

x−∞ +∫        (b) 1
2

1

0

ln d ,x x
x∫        (c) 

1

20

1 d .
1

x
x−∫  

 
 
 
Example 1.8.1 

Show that none of the following integrals exists. 

(a) 
1

1 d ,I xx
∞

= ∫      (b) 
( )

1

20

1 d ,
1

J x
x

=
−∫      (c) 

0
cos d .K x x

∞
= ∫  

 
Solution 
 

Replacing the upper limit in I by c gives [ ]11

1 d ln ln .
c cx x cx = =∫   When 

, lnc c→∞ →∞  and therefore I does not exist. 

[Remember that ∞ does not qualify as a limiting value because limiting values must be 
finite.  Read the definition given in Section 1.1 again.] 

 
 

The integral J is improper because 
( )2

1
1 x−

 is not defined at 1.x =   Consider therefore 

 
( )20 0

1 1 1d 1.1 11

cc
x x cx

⎡ ⎤= − = − +⎢ ⎥− −⎣ ⎦−∫  

When 11, .1c c→ →∞
−

 Therefore the integral J does not exist. 

 
 

Consider [ ] 00
cos d sin sin .

c cx x x c= =∫   When , sinc c→∞  oscillates between �1 and 

+1.  Hence there is no limiting value and K does not exist. 
 
 

(a) 

(b) 

(c) 
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Example 1.8.2 

(a)  Explain why 
e

0
ln dx x x∫  is an improper integral. 

(b)  Show that the integral exists and find its value. 
 

 
 

The integral is improper because lnx x  is not defined at 0.x =  
 
 

Let 
e

ln d .
c

I x x x= ∫   Integrating by parts, 

 

e e
2 2

e2
2 2

2 2 2

1 1 1ln d2 2

1 1e ln2 2 4

1 1 1e ln .4 2 4

cc

c

I x x x xx

xc c

c c c

⎡ ⎤= − ×⎢ ⎥⎣ ⎦

⎡ ⎤= − − ⎢ ⎥⎣ ⎦

= − +

∫

 

When 2 20, ln 0 and 0.c c c c→ → →   Hence the given integral exists and its value 

is 21 e .4  

 
 
Exercise 1G 

1. (a) Show that one of the following integrals exists and that the other does not: 

  
1

3 31 0

1 1d , d .x x
x x

∞

∫ ∫  

 (b) Evaluate the one that does exist. 
 
 
2. Evaluate the following improper integrals, showing in each case the limiting process used. 

 (a) 
1

20

1 d ,
1

x
x−∫  (b) 

( )20

1 d ,
1

x
x

∞

+∫  (c) 
0

e d ,xx x
∞ −∫  

 (d) 
( )

3
2

0 1 d ,
4

x
x−∞ −

∫  (e) 
1 2
0

ln d ,x x x∫  (f) 
e

0
ln d .x x∫  

 
 
3. (a) Explain why each of the following integrals is improper: 

  (i) 
0

1 d ,
1

x
x

∞

+∫       (ii) 
1

20
d .

1
x x
x−∫  

  
 (b) Show that neither integral exists. 
 

Solution 

(a) 

(b) 
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Miscellaneous exercises 1 

1. Use Maclaurin�s theorem to show that 
 

( ) 2πtan 1 2 2 ...4x x x+ = + + +  . 

 
 
2. Explain why ln x  cannot have a Maclaurin expansion. 
 
 
3. Use Maclaurin�s theorem to show that 
 

( ) ( ) ( )( )2 31 1 2
1 1 ...2! 3!

n x
n n n n n

x nx x
− − −

+ = + + + +  . 

 
 

4. (a) Expand ( )
1
21 2 sinx x+  as a series in ascending powers of x , up to and including the 

term in 3x . 
 
 (b) Determine the range of values of x  for which the expansion is valid. 
 
 
5. (a) Obtain the first two non-zero terms in the expansion of 
 

3e ln (1 3 )x x+ − . 
 
 (b) Determine the range of values of x  for which the expansion is valid. 
 
 
6. (a) Obtain the first three non-zero terms in the expansions in ascending powers of x of 
  (i) 2e ,xx (ii) cos 2 .x  
 

 (b) Hence find   
2

0

elim .cos 2 1
x

x

x
x→ −

 

[AQA, 1999] 
 
 
7. By means of the substitution 3,x y= +  or otherwise, evaluate 

   
( )
( )3

4 1
lim .

1 2x

x

x→

− −

+ −
 

[JMB, 1984] 



klmGCE Further Mathematics (6370)                        Further Pure 3 (MFP3) Textbook  
 

 
34 

8. (a) Find 
( )20

1lim 1 ln .
1x

x
x→

⎡ ⎤
⎢ ⎥−
⎢ ⎥+⎣ ⎦

 

 

 (b) Find elim .
e

x

xx

x
x→∞

+
−

 

 
 
9. The function f is defined 

   ( ) ef , 1.1
x

x xx= ≠
−

 

 Show that ( )f   as  .x x→−∞ →∞  
 
 
10.(a) Use integration by parts to evaluate 

   
1
ln d , 0.

a
x x a >∫  

 (b) Explain why 
1

0
ln dx x∫  is an improper integral.  Determine whether the integral exists or 

not, giving a reason for your answer. 
[NEAB, 1995] 

 
 
11. (a) Use the expansion of cos 1x −  to obtain the expansion of cos 1e x−  in a series in 

ascending powers of x, up to and including the term in 4.x  
 

 (b) Evaluate 
cos

20

e elim .
x

x x→

−  

[JMB, 1988] 

12 (a) Write down the value of  lim .2 1x

x
x→∞ +

 

 
 (b) Evaluate 

   ( )
1

1 2 d2 1 xx x

∞

−
+∫  

  giving your answer in the form ln ,k  where k is a constant to be determined. 
  Explain why this is an improper integral. 

[NEAB, 1997] 
 
 



klmGCE Further Mathematics (6370)                        Further Pure 3 (MFP3) Textbook  
 

 
35 

13. The function f is defined by 

   ( ) ( )
1
21 1f , 1 .1 3 3

xx xx
+= − ≤ <
−

 

 (a) Expand ( )f x  as a series in ascending powers of x, up to and including the term in 2.x  
 
 (b) By expressing ( )ln f x⎡ ⎤⎣ ⎦  in terms of ( ) ( )ln 1  and ln 1 3 ,x x+ −  expand ( )ln f x⎡ ⎤⎣ ⎦  as a 

series in ascending powers of x, up to and including the term in 3.x  
 

 (c) Find  ( )
( )0

f 1
lim .

ln fx

x
x→

−
⎡ ⎤⎣ ⎦

 

[NEAB, 1998] 
 
 
14. Show that one of the following integrals exists and that the other does not.  Evaluate the 

one that exists, showing the limiting process used. 

 (a) 
1

0

1 ln dI x xx= ∫  (b) 
1

0

1 ln dJ x x
x

= ∫  

[JMB, 1990] 
 
 
15. A curve C has the equation 
    2e .xy x −=  

 (a) Show that C has stationary points at the origin and at the point ( )22,4e .−  

 
 (b) Sketch C, indicating the asymptote clearly. 
 
 (c) The area of the region in the first quadrant bounded by C, the positive x-axis and the 

ordinate x a=  is A. 

   (i)  Show that 22 2e 2 e e .a a aA a a− − −= − − −  
 
  (ii)  Hence obtain the area of the whole of the region in the first quadrant bounded 
         by C and the positive x-axis. 



klmGCE Further Mathematics (6370)                        Further Pure 3 (MFP3) Textbook  
 

 
36 

16. (a)   (i) Expand ( )
1

2 21 x x+ +  as a series in ascending powers of x, up to and including 

       the term in 2.x  
 
  (ii)  Hence, or otherwise, show that 

   ( )
1

2 22 1 31 1 .2 8x x x x− + = − + +"  

 

 (b)  Find   
( )
( )

1
2

1
2

2

0 2

1 1
lim .

1 1x

x x

x x→

+ + −

− + −
 

 

 (c)  (i)  Express 
1
2

2
1 1 1xx

⎛ ⎞+ +⎜ ⎟
⎝ ⎠

 in the form 

   ( )
1

2 21 1 ,p x x
x

+ +  

         where p is a number to be determined. 
 

  (ii)  Find   
1 1
2 2

2 20

1 1 1 1lim 1 1 .
x x xx x→

⎡ ⎤
⎛ ⎞ ⎛ ⎞⎢ ⎥+ + − − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠
⎣ ⎦

 

[AQA, 1999] 
 
 
17. (a)  (i)  Obtain, in simplified form, the first three non-zero terms in the expansions 
         in ascending powers of x of each of 

   sin 2   and  1 e .xx −−  
    

  (ii)  Hence show that 
0

sin 2lim 2.
1 e xx

x
−→
=

−
 

 

 (b)    (i)  Show that the expansion of 1
sin 2x  in ascending powers of x begins with 

          the terms 

   31 1 7 .2 3 45x xx + +  

    (ii)  Find the first three non-zero terms in the expansion of 1
1 e x−−

 in ascending 

           powers of x. 
 

  (iii)  Hence find  
0

2 1lim .sin 2 1 e xx x −→

⎛ ⎞−⎜ ⎟−⎝ ⎠
 

[AQA, 2001] 
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Chapter 2: Polar Coordinates 
2.1  Cartesian and polar frames of reference 

2.2 Restrictions on the values of θ 

2.3 The relationship between Cartesian and polar coordinates 

2.4 Representation of curves in polar form 

2.5 Curve sketching 

2.6 The area bounded by a polar curve 

 
 
 
 
 
 
 
This chapter introduces polar coordinates.  When you have completed it, you will: 
 
• know what is meant by polar coordinates; 
• know how polar coordinates are related to Cartesian coordinates; 
• know that equations of curves can be expressed in terms of polar coordinates; 
• be able to sketch curves of equations given in polar form; 
• be able to find areas by integration using polar coordinates. 
 
 
 



klmGCE Further Mathematics (6370)                        Further Pure 3 (MFP3) Textbook  
 

 
38 

2.1 Cartesian and polar frames of reference 

You should already be familiar with the use of rectangular Cartesian coordinate axes as a frame 
of reference for labelling points in a plane and for investigating the properties of curves given 
in Cartesian form.  When fixed axes Ox and Oy have been chosen, the position of any point P 
in the plane Oxy can be specified by its coordinates (x, y) relative to those axes. 
 
This is not the only way in which points in a plane may be labelled.  Let O be a fixed point and 
OL a fixed line in the plane.  For any point P, let the distance of P from O be r and the angle 
that OP makes with OL be θ. 
 
 
 
 
 
 
 
Then r and θ  are called the polar coordinates of P: when their values are known, the position 
of P is also known. 
 
 
 
 
 
 
 
 
Note that 0r ≥  because r is defined here as the distance of P from O, which is necessarily 
non-negative.  In some textbooks, r is defined in such a way that negative values are 
permissible. 
 
 
Example 2.1.1 

Draw a diagram which shows the points A and B with polar coordinates ( )4π2, 5  and ( )π 3, ,2−  

respectively. 
 
Solution 
 
 
 
 
 
 
 
 
 
 
 

The point O is called the pole and OL is called the initial line.  
The angle θ  is measured in radians.  Positive values of θ 
correspond to an anticlockwise rotation from OL, and negative 
values to a clockwise rotation.  The plane containing OL and OP is 
called the r�θ  plane. 

O

r 

θ 

P 

L 

O
2 

 4π
5

A 

L π
2−  

B

3
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Exercise 2A 

1. Show on a diagram the points A, B, C and D which have polar coordinates ( )π1, ,5  ( )2, 0 ,  

( )3π3, 4−  and ( )5π3, ,4  respectively. 

 

2. The points A and B have polar coordinates ( )π2, 6  and ( )π3, ,2−  respectively. 

 (a) Find the angle between OA and OB, where O is the pole. 

 (b) Use the cosine rule to find the distance between A and B. 
 

3. Sketch the regions of the r�θ  plane for which  (a)  1 2,r≤ ≤    (b)  π π .3 2θ− ≤ ≤  

 
 
 
 
 
2.2 Restrictions on the values of θ 

In answering Question 1 in Exercise 2A you will have noticed that C and D are the same point 
even though they have different polar coordinates. 
 
To ensure that each point in a plane, other than the pole O, has one and only one pair of polar 
coordinates, the values that θ  can take will sometimes be restricted to the interval π πθ− < ≤  
or 0 2π.θ≤ <   The pole is an exceptional point: it is defined by 0r =  without reference to θ. 
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2.3 The relationship between Cartesian and polar coordinates 

The diagram below shows the Cartesian coordinate axes Ox and Oy together with a polar 
coordinate system in which O is the pole and Ox is the inital line. 
 
 
 
 
 
 
 
 
 
When the two systems are superimposed in this way, there are simple relationships between the 
Cartesian and polar coordinates of P.  It can be seen from the diagram that 
 
 
 
 
 
 
The first two of these relationships hold for all values of θ , always giving the correct signs for 

x and y.  For example, the point A with polar coordinates ( )2π2, 3  will lie in the second 

quadrant as shown in the diagram below. 
 
The Cartesian coordinates are 

 
2π2cos 1,3
2π2sin 3.3

x

y

= = −

= =
 

 
 

Exercise 2B 

1. The points A and B have polar coordinates ( )π3, 6  and ( )π4, ,3−  respectively. 

 (a) Show that 5.AB =  

 (b) Find the Cartesian coordinates of A and B. 

 (c) Use the Cartesian coordinates of A and B to verify that 5.AB =  
 
 
2. Find the polar coordinates of the points with Cartesian coordinates 
 (a)  (2, 2),     (b)  (�1, 3),      (c)  (�3, �4). 
 

3. The points A and B have polar coordinates ( )π3, 3  and ( )π1, ,6−  respectively.  Show that 

AB is perpendicular to the initial line, and find the length of AB. 

O 

r 

θ 

P 

x 

 y 

x 

 y

 2 2 2

cos , sin

, tan

x r y r
yr x y x

θ θ

θ

= =

= + =
 

O

2

 2π
3

A

x 

 y

1

 3
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2.4 Representation of curves in polar form 

If a point P with Cartesian coordinates (x, y) moves on a circle of radius a and centre C (a, 0), 
then, for all positions of P, 
 2 2 2( ) .x a y a− + =  

This is the Cartesian equation of the circle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now let P have polar coordinates (r, θ), as shown in the diagram above.  The circle cuts the 
positive x-axis at the point A (2a, 0).  Hence, from the triangle OAP, 
 2 cos .r a θ=  

This is called the polar equation of the circle.  Note that the equation is valid for negative 
values of θ  because cos( ) cos .θ θ− =  
 
There are many examples of curves whose properties are more easily investigated using a polar 
equation rather than a Cartesian equation.  The following two, particularly simple, cases of 
polar equations should be noted: 

! the equation r a=  represents a circle centred at O and of radius a; 
! the equation θ α=  represents a semi-infinite straight line OA radiating from the origin and 

making an angle of α with the initial line OL. 

These loci are shown in the diagrams below. 

 

 

 

 

 

 

 

 

 

O 

r 

θ 

P

x 

 y 

a  aC A

O
α 

A 

L O 

a 

L 
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Exercise 2C 

1. Use a method similar to that used at the beginning of Section 2.4 to find the polar equation 

of the circle of radius a whose centre has polar coordinates ( )π, .2a  

 
2. Use the relationships between Cartesian and polar coordinates, given in Section 2.3, to 

obtain the polar equation of the circle with Cartesian equation 
  ( )2 2 2.x a y a− + =  
 
3. Find the polar equation of the straight line which is perpendicular to the initial line and at a 

perpendicular distance a from the pole. 
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L A (3, 0) B (1, 2π)O 

2.5 Curve sketching 

In general, an equation connecting r and θ  represents a curve.  To discover the shape of the 
curve, values of r for convenient values of θ  can be tabulated to give the polar coordinates of a 
number of points on the curve.  Plotting these points and joining them up will give a good 
indication of the shape of the curve, but it may be necessary to investigate a little further to 
determine the shape near some points with more certainty.  The following considerations will 
often prove helpful. 
 
1. There may be some symmetry.  For example, if r can be expressed as a function of cosθ  

only, the curve will be symmetrical about the initial line 0θ =  because cos( ) cos .θ θ− =   
Also, if r can be expressed as a function of sinθ  only, the curve will be symmetrical about 

the line π
2θ =  because sin(π ) sin .θ θ− =  

2. If 0 as ,r θ α→ →  then the line θ α=  will be a tangent to the curve at the pole O. 

3. Negative values of r are not allowed.  If values of θ  in the interval α θ β≤ ≤  give 0,r <  
then there is no curve in the region .α θ β≤ ≤  

 
Example 2.5.1 

Sketch the curve with polar equation   3π , 0 2π.π+r θθ= ≤ ≤  

 
Solution 
 
This is a relatively easy curve to sketch.  It can be seen that r decreases steadily as θ  increases 
from 0 to 2π.  Also, when 0, 3rθ = =  and when 2π, 1.rθ = =   The curve must therefore be 
roughly as shown in the diagram below. 
 
Point A has polar coordinates (3, 0). 

Point B has polar coordinates (1, 2π).  
 
 
 
To obtain a more accurate 
sketch, a few more values 
of r are needed. 

The values shown are sufficient 
in this case. 
 
 
 
Plotting the five points with the 
coordinates given in the table above 
gives the curve shown in this diagram. 
   
  

r decreases 
as θ  increases 

O
θ 

A L B 

r

θ 0 π
2  π 3π

2  2π 

r 3 2 1.5 1.2 1 
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Example 2.5.2 

Sketch the curve cos 2 ,r a θ=  where 0 and π π.a θ> − < ≤  
 
Solution 
 
Note first that, because cos( 2 ) cos 2 ,θ θ− =  the curve will be symmetrical about the initial line.  
Therefore it is sufficient to tabulate values of r for 0 π.θ≤ ≤  
 

θ 0 π
12  π

6  π
4  π

3  5π
12  π

2  7π
12  2π

3  3π
4  5π

6  11π
12  π  

r a 3
2

a  2
a  0 �ve �ve �ve �ve �ve 0 2

a  3
2

a  a 

 

Because 0r <  when π 3π ,4 4θ< <  there is no curve in this region.  Plotting the points and 

joining them up gives the curve shown in the diagram below. 
 
 
 
 
 
 
 
 
 
 
 
The complete curve can now be obtained by reflecting this curve in the initial line.  This is 
shown in the diagram below. 
 
 
 
 
 
 
 
 
The curve consists of two equal loops.  Note that the curve is also symmetrical about the line 

π .2θ =   This could have been deduced from cos 2r a θ=  by expressing it as 2(1 2sin ).r a θ= −   

As mentioned earlier, if r can be expressed as a function of sinθ  only, the curve is symmetrical 

about the line π .2θ =   Note also, from cos 2 ,r a θ=  that when π 3πor , 0.4 4 rθ → ± ± →   This 

indicates that the lines π 3π and =4 4θ θ= ± ±  are tangents to the curve at the pole, as confirmed 

by the diagram. 

O 
0 π 

π
2

3π
4

 
5π
6

 

11π
12

 

π
4 π

6
π

12

L O a
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Exercise 2D 

1. A curve has the polar equation 

  1 , 0 4π.πr θ θ= + ≤ ≤  

 (a) Make a rough sketch of the curve by considering how r varies as θ  increases from 
0 to 4π. 

 (b) Tabulate the values of r for π0, , π, , 4π.2θ = …  Hence make a more accurate sketch of 

the curve. 
 
 
2. A curve has the polar equation 

  2 cos ,r θ= +  where π< π.θ− ≤  

 (a) Tabulate the values of r for π π π 2π 5π0, , , , ,  and π.6 3 2 3 6θ =  

 (b) Sketch the curve. 
 
 
3. (a) Sketch the curve with the polar equation 

  1 sin , π< π.r θ θ= − − ≤  
 (b) State the polar equation of the tangent to the curve at the pole. 
 
 
4. A curve C has the polar equation 

  sin 2 ,r a θ=  where 0 and π< π.a θ> − ≤  

 (a) Show that there is no part of C in the regions π ππ and 0.2 2θ θ< < − < <  

 (b) Sketch the curve. 
 
 
5. (a) Sketch the curve with the polar equation 

  2sin 3 , π< π.r θ θ= − ≤  

 (b) Give the polar equations of the tangents to the curve at the pole. 
 
 
6. Sketch the curve with the polar equation 

  
1
4e , 0 2π.r
θ

θ= ≤ ≤  
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2.6 The area bounded by a polar curve 

Consider the curve 
 f ( ), .r θ α θ β= ≤ ≤  
 
Suppose that 0r ≥  throughout the interval .α θ β≤ ≤   Let P and Q be the points on the curve 
at which  and ,θ α θ β= =  respectively. 
 
 
 
 
 
 
 
 
 
 
 

 
A formula for the area A bounded by the sector OPQ can be found as follows. 
 
Consider an elementary sector ORS, as shown in the diagram above, where R(r, θ) and 

( , )S r rδ θ δθ+ +  are neighbouring points on the curve.  The area, ,Aδ  of this elementary 
sector is approximately the same as that of a circular sector of radius r and angle ,δθ  i.e. 

 21 .2A rδ δθ≈  

This approximation will become increasingly accurate as 0.δθ →   Forming the sum of the 
areas of all such elementary sectors between and ,θ α θ β= =  the total area, A, of the sector 
OPQ is given by 

 2

0

1lim .2A r
θ β

δθ θ α
δθ

=

→ =
= ∑  

 
Hence,  
 
 
 
 
When applying this formula, it is important to remember that r must be defined and be 
non-negative throughout the interval .≤ ≤α θ β  
 

 21 d2A r
β

α
θ= ∫  

 Q 

 O L

S

R

P 

 θ β=

  θ α=
δθ 

δA 

r 
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Example 2.6.1 

Find the total area of the two loops of the curve cos 2 ,r a θ=  where 0 and π π.a θ> − < ≤  
 
Solution 
 
The sketch of the curve was obtained earlier.  For convenience, it is repeated here. 
 
 
 
 
 
 
 
 

The two loops are reflections of each other in the line π
2θ =  and the right-hand loop lies in the 

region π π .4 4θ− ≤ ≤   Hence the total area bounded by the two loops will be given by 

 

( )

2 2

2

2

2

π
4

π-
4
π
4

π-
4

π
4

π
4

2

12 cos 2 d2

1 (1 cos 4 )d2

1 1 sin 442

1 π π
2 4 4

π .4

A a

a

a

a

a

θ θ

θ θ

θ θ
−

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

=

= ×

= +

+

+

=

∫

∫

 

 

 
Exercise 2E 

1. Explain why it would be wrong to calculate the area of the curve in Example 2.6.1 
 by evaluating 

  2 2
π

π

1 cos 2 d .2 a θ θ
−
∫  

 
2. (a) Write down the polar equation of a circle of radius a with centre at the pole O. 

 (b) Use the formula 21 d2A r
β

α
θ= ∫  to show that the area of the circle is 2π .a  

 

 

L O 
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Example 2.6.2 

A curve is given in Cartesian form by the equation 
1
22 2 2 22 ( ) .x y x x y+ − = +  

(a) Show that the polar equation of this curve is 1 2cos ,r θ= +  where π π.θ− < ≤  

(b) Show that, at the pole, the curve is tangential to the lines 2π .3θ = ±  

(c) Sketch the curve. 

(d) Show that the area enclosed by the curve is 3 32π+ .2  

 
Solution 

 
Substituting 2 2 2  and cosx y r x r θ+ = =  into 

1
22 2 2 22 ( )x y x x y+ − = +  gives 

  2 2 cos .r r rθ− =  

Hence, 0  or  1 2cos .r r θ= = +  

The equation 0r =  simply shows that the pole O lies on the curve.  Because no 
restrictions were placed on x or y, θ can take all values in an interval of length 2π.  The 
equation of the curve is therefore, as stated, 1 2cos ,r θ= +  where π π.θ− < ≤  

When 10, cos .2r θ→ → −   Hence 2π .3θ → ±   The lines 2π
3θ = ±  are therefore tangents 

to the curve at the pole. 

 
Because r is a function of cos ,θ  the curve is symmetrical about the initial line.  It is 
sufficient therefore to tabulate values in the interval 0 π.θ≤ ≤  
 

θ 0 π
6  π

3  π
2  2π

3  5π
6  π  

r 3 2.73 2 1 0 �ve �ve 

  
The table shows that there is 
no curve in the region 
2π π.3 θ< ≤  

 
Plotting these points, 
and remembering that 
the curve is symmetrical 
about the initial line, the 
curve shown here is 
obtained. 

 

L3 

2π
3θ =

2π
3θ = −

O 

(a) 

(b) 

(c) 
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For all values of θ  in the interval 2π0 , 0.3 rθ≤ ≤ ≥   Hence, the area enclosed by the 

curve is 

  
{ }

2

2

2π
3

0
2π
3

0
2π
3

0

2π
3

0

1
22 (1 2cos ) d

(1 4cos 4cos )d

1 4cos 2(1 cos 2 ) d

3 4sin sin 2

3 32π 4 2 2

32π 3.2

A θ θ

θ θ θ

θ θ θ

θ θ θ⎡ ⎤= ⎣ ⎦

=

=

= +

= + +

= + + +

+ +

⎛ ⎞
+ × −⎜ ⎟
⎝ ⎠

+

∫

∫

∫  

 
Exercise 2F 

1. (a) Sketch the curve with polar equation  , 0 π.r θ θ= ≤ ≤  
 (b) Find the area of the region bounded by the curve and the line π.θ =  
 
 

2. (a) Sketch the curve with polar equation  
1
4e , 0 π.r
θ

θ= ≤ ≤  
 (b) Find the area of the region bounded by the curve and the lines 0 and π.θ θ= =  
 
 
For the next three problems, you will need to recall some of the curves you obtained in 
Exercise 2D. 
 
 
3. Find the area of the region enclosed by the curve with the polar equation 

  2 cos , π< π.r θ θ= + − ≤  
 
 
4. Find the area enclosed by each of the loops of the curve with the polar equation 

  sin 2 ,  where 0 and π< π.r a aθ θ= > − ≤  
 
 
5. (a) Sketch, on the same diagram, the curve with the polar equation 

  1 sin , π< πr θ θ= − − ≤  

   and the circle 1 .2r =  

 (b) Find the polar coordinates of the points where the two curves intersect. 

 (c)  Find the total area of the region which lies inside both curves. 

(d) 
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Miscellaneous exercises 2 

1. The diagram shows a sketch of the curve whose polar equation is 

   
1
2 , 0 2π.r θ θ

−
= < ≤  

 
 
 
 
 
 
 
 
 
 
 
 Show that the area enclosed between the curve and the lines θ α=  and 2 ,θ α=  where 

0 π,α< ≤  is independent of .α  
[AQA 1999] 

 
 
2. A line l and a curve C have polar equations 

   2sin 2, , 0 π,1 sinr rθ θθ= = < ≤
+

 

 respectively. 
 
 (a) Sketch l and C on the same diagram. 
 
 (b) The point P, with polar coordinates ( ), ,a φ  lies on C and O is the pole.  The foot of the 

perpendicular from P onto l is N.  Show that .OP PN=  
 
 
 

O  Initial line 
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3. In terms of polar coordinates ( ), ,r θ  the equation of a curve C is 

   πtan 2 , 0 .4r θ θ= ≤ <  

 
 (a) Write down expressions in terms of θ  for the Cartesian coordinates ( ),x y  of a general 

point on C. 
 
 (b)  
 
 
 
 
 
 
 
 
 
 
 
 
  The diagram shows a sketch of part of the curve C.  The point P lies on the curve and is 

such that π ,6POQ∠ =  where Q is the foot of the perpendicular from P to the x-axis. 

   (i)  Find the exact value of the area of the triangle OPQ. 
 
  (ii)  Show that the area of the shaded region bounded by OQ, PQ and the arc of the 
         curve between O and P is 

   π 3 .12 8+  

[NEAB 1997] 
 
 

O 

P

Q

 y

 x 
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4. The diagram shows a sketch of the curve  ( )2 4 1 .y x= −  
 
 
 
 
 
 
 
 
 
 
 
 
 

 (a) Show that the area of region R bounded by the axes and the curve is 4
3 . 

 
 (b)  (i)  Show that the equation of the curve can be expressed as 
   ( )22 2 2 .x y x+ = −  

  (ii)  Hence, obtain the polar equation of the above curve in the form ( )f .r θ=  
 
 (c) Hence, or otherwise, show that 

   
( )

1π2

2
0

d 2 .31 cos
θ
θ

=
+∫  

[AQA 2000] 
 
 
5. The curve C1 is given in polar coordinates, with origin O, by the equation 

   ( )1 cos , π π.r a θ θ= + − < ≤  

 (a) Sketch the curve. 
 
 (b) A straight line through O meets C1 at the points A and B, and M is the mid point of AB.  

The line makes an angle φ  with the initial line 0θ =  and φ  varies between 1 π2−  and 

1 π.2+  

    (i)  Prove that AB is of constant length. 

   (ii)  Show that the locus of M is the curve C2 whose equation is 

   1 1cos , π π.2 2r a θ θ= − ≤ ≤  

  (iii)  Sketch the curve C2 on the same diagram as the curve C1. 
 
 (c) Given that S1 is the area of the region enclosed by C1 and that S2 is the area of the region 

enclosed by C2, show that 1 26 .S S=  
[JMB 1989] 

x

 y

 R
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6. The Cartesian equation of a curve C is 

   ( )22 2 22 ,x y a xy+ =  

 where a is a positive constant. 
 
 (a) Show that the equation of C can be expressed in polar coordinates as 
   sin .r a θ=  
 
 (b)   (i)  Write down the ranges of values of θ  in the interval π πθ− < ≤  for which no 
          part of C exists, giving a reason for your answer. 
 
   (ii)  Write down the polar coordinates of the points on C which are furthest from 
          the origin. 
 
  (iii)  Sketch C. 
 

 (c) Find the area A of that part of the interior of C which lies in the region 10 π.2θ≤ ≤  

 

 (d) The line ,θ β=  where 10 π,4β< <  divides A into two parts which are in the ratio 1: 3.   

Find the value of .β  
[NEAB 1998] 
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Chapter 3: Introduction to Differential Equations 
3.1 The concept of a differential equation: order and linearity 

3.2 Families of solutions, general solutions and particular solutions 

3.3 Analytical solution of first order linear differential equations: integrating factors 

3.4 Complementary functions and particular integrals 

3.5 Transformations of non-linear differential equations to linear form 

 
 
 
 
 
 
 
This is the first of three chapters on differential equations.  When you have completed it, 
you will: 

• have been reminded of the basic concept of a differential equation; 
• have been reminded of the method of separation of variables; 
• have been reminded of the growth and decay equations; 
• understand the terms order, linearity, families of solutions, general solutions, particular 

solutions, boundary conditions, end conditions and initial conditions; 
• know how to solve first order linear differential equations using an integrating factor; 
• know how to solve first order linear differential equations with constant coefficients by 

finding a complementary function and a particular integral; 
• know how some first order non-linear differential equations can be solved by transforming 

them to linear form. 
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3.1 The concept of a differential equation: order and linearity 

There are numerous applications of differential equations in modelling real world phenomena, 
especially in science and engineering.  In this chapter, and those that follow, some of the 
simpler types of differential equations that occur will be introduced.  Two distinct types of 
method for solving differential equations will be considered: 

• analytical methods, in which exact solutions of explicit mathematical forms are found; 
• numerical methods, which give approximate solutions to differential equations that cannot 

be solved using analytical methods. 
 
You will already be familiar with the basic concept of a differential equation � it is one which 
involves the derivatives of a function.  The function will usually be denoted by ( ).y x   
Particular examples are: 

  2 2 2

2 2

2 2

d d2 1 2d d
d d
d d

d d d0 3 2 sin .dd d

y yx xyx x
y y yx y x yx x x

y y yy y xxx x

= + =

− = = +

+ = + + =

 

When only the first order derivative, d ,d
y
x  is involved (as in the first four examples above), the 

differential equation is said to be of first order.  When the second order derivative, 
2

2
d ,
d

y
x

 is 

involved (as in the last two examples), the differential equation is said to be of second order.  
Differential equations of order 3, 4, � are defined similarly. 
 
A differential equation is said to be linear if it is linear in the dependent variable y and the 
derivatives of y.  The fourth example above contains contains two non-linear terms, 

2d  and ,d
yy yx  and is therefore non-linear.  All the other examples are linear. 

 
Linearity can also be defined in another way: a differential equation is linear if the highest 
order derivative of the dependent variable y can be expressed as a linear function of y and the 
lower order derivatives.  Hence, for a second order differential equation to be linear it must be 

possible to express 
2

2
d
d

y
x

 in the form 

 ( ) ( ) ( )
2

2
d df g h ,dd

y yx x y x xx
= + +  

where f, g and h are functions of x only. 
 



klmGCE Further Mathematics (6370)                        Further Pure 3 (MFP3) Textbook  
 

 
56 

Exercise 3A 

1. Write down the order of each of these differential equations. 

 (a) 2d .d
yx y xx + =  (b)  

2

2
d d 0.dd

y y yxx
+ + =    

 (c)  3 3d .d
y x yx = +  (d)    

2d 1.d
yx yx

⎛ ⎞ + =⎜ ⎟
⎝ ⎠

 

 
 
2. State which of the differential equations in Question 1 are linear. 
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3.2 Families of solutions, general solutions and particular solutions 

Solving a differential equation is quite different to solving an algebraic equation.  Finding the 
solution means finding the function ( )y x  which satisfies the differential equation. 

The differential equations d d2 1 and 2 ,d d
y yx xyx x= + = listed in Section 3.1, are types that you 

should recognise from earlier studies and you will be familiar with the methods of solving 
them. 
 
The first is solved by simply integrating each side with respect to x.  This gives 
 2 ,y x x C= + +  
where C is an arbitrary constant. 
 
The second equation can be solved by the method of separation of variables.  The differential 
equation can be rewritten as 

 d 2 d .y x xy =∫ ∫  

Performing the integrations gives 
 2ln ,y x C= +  
where C is an arbitrary constant.  Hence, 

 

2

2

2

e

e e

= e ,

x C

C x

x

y

A

+= ±

= ±  

where, for convenience, eC±  has been rewritten as the arbitrary constant A. 
 
The set of all possible solutions of a differential equation is said to form a family of solutions.  

Particular members of the family of solutions of the differential equation d 2 1d
y xx = +  are 

 

2

2

2

1,

,

1.

y x x

y x x

y x x

= + −

= +

= + +

 

 
These are obtained by taking 1, 0 and 1,C = −  
respectively, in the solution obtained above.  The 
diagram alongside shows how the graphs of these 
three members of the family of solutions are 
related to each other � they differ only by a simple 
translation of 1 unit in the y-direction. 
 
 
 
 
 

x

 y 

1 

0

�1 
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Solutions that involve arbitrary constants are called general solutions because they represent 
the whole family of possible solutions.  A solution which satisfies the differential equation but 
contains no arbitrary constants is called a particular solution.  General solutions of first order 
differential equations always contain exactly one arbitrary constant, as will be seen in the cases 
dealt with in this chapter. 

For the differential equation d 2 ,d
y xyx =  the general solution, as shown above, is 

2
e .xy A=   

Examples of particular solutions are 
2 2

e  and 2e ,x xy y= =  obtained by taking 1 and 2,A A= =  
respectively. 
 
In most of the applications of differential equations, a particular solution valid over some 
specified interval, such as 0 1 or 0,x x≤ ≤ ≥  is required.  The required solution of a first order 
differential equation is often chosen in order to satisfy a given condition at an end point of an 
interval under consideration.  For example, if the interval under consideration is 0,x ≥  the 
given condition might be ( )0 2.y =  
 
It will be shown later that general solutions of second order linear differential equations contain 
two arbitrary constants and therefore two conditions need to be specified to identify a particular 
solution.  Such conditions are called boundary conditions or end conditions or initial 
conditions.  The term �initial condition� is particularly appropriate in applications in which the 
independent variable is time t and a solution valid for 0t ≥  is required.  Then 0t =  marks the 
beginning of the period under consideration. 
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Example 3.2.1 

The function ( )y x  satisfies the differential equation 

 2 2d 0, 1.d
yx y xx − = ≥  

(a)  Find the general solution for ( ).y x  

(b)  Hence find the particular solution satisfying the boundary condition ( ) 11 .2y =  

 
Solution 
 

The differential equation can be written as 

 
2

2
d .d
y y
x x
=  

Separating the variables, this becomes 

 2 2
d d ,y x
y x

=∫ ∫  

giving 1 1 ,Cy x− = − +  

where C is an arbitrary constant. 

Hence, 1 1 .Cx
y x

−=  

The general solution is therefore 

 .1
xy Cx=
−

 

 

Applying the boundary condition, ( ) 11 ,2y =  gives 

 1 1 .2 1 C=
−

 

Hence, 1.C = −  The required particular solution is therefore 

 .1
xy x=
+

 

 
 

(a) 

(b) 
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Exercise 3B 

1. The differential equation d ,d
y kyx =  where k is a constant, governs phenomena involving 

growth ( )0k >  or decay ( )0 .k <  

 Show that the general solution is e ,kxy C=  where C is an arbitrary constant. 

[You will find it useful to memorise this solution so that you can quote it when required.] 
 
 
2. (a) Obtain the general solution of the differential equation 

  2d 0.d
y xyx + =  

 (b) Find the particular solution which satisfies the condition ( )0 2.y =  
 
 
3. (a) Obtain an equation representing the family of solutions of the differential equation 

  2
d 1 , 0.d

y xx x
= >  

 (b) Find the equation of the member of this family whose graph passes through the 
point (1, 0). 

 (c) Sketch this graph. 
 
 
4. (a) Solve the differential equation 

  d 0, 0 2,d
y y xx + = ≤ ≤  

  subject to the boundary condition ( )0 3.y =  

 (b) Verify that ( )2 0.406.y ≈  
 
 
5. A cyclist travelling on a level road stops pedalling and freewheels for 5 seconds.  The 

distance travelled by the cyclist in t seconds is x metres.  The relationship between x and t 
while the cyclist is freewheeling can be modelled by the differential equation 

  
( )2

d 250 .d 5
x
t t
=

+
 

 (a) Find the general solution of this differential equation. 

 (b)  (i) State the appropriate initial condition to be satisfied by ( ).x t  
  (ii) Find the particular solution satisfying this condition. 

 (c) Deduce that the cyclist travels 25 metres while freewheeling. 
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3.3 Analytical solution of first order differential equations: integrating 
factors 

The general first order linear differential equation may be expressed as d ,d
y Py Qx + =  

where P and Q are functions of x.  A simple example is 2d ,d
y y xx x− =  which was included in the 

list of differential equations in Section 3.1. 
 
Except in the special cases when both P and Q are constants or when one of these two functions 
is zero, differential equations of this type cannot be expressed in variables separated form; the 
method of separation of variables is therefore not available.  However, there are two other 
analytical methods of solution which can be used, the first of which is as follows. 
 
If each side of the differential equation 

 d
d
y Py Qx + =  

is multiplied by I, where I is a function of x, it becomes 

 d .d
yI IPy IQx + =  

The aim of this method is to choose I  so that 

 ( )d d .d d
yI IPy Iyx x+ =  

Since ( ) dd d ,d d d
y IIy I yx x x= +  

 

I  must be chosen so that d .d
I IPx =   Hence 

 d d ,I P xI =∫ ∫  

which gives ln dI P x= ∫  and therefore de .P xI ∫= ±   It is usual to choose the positive sign 
(either will do) and hence 
 
 
 
The function I is obtainable provided that ( )P x  can be integrated. 
 
Assuming that I has been found, the differential equation becomes 

 ( )d .
d

Iy IQ
x

=  

Hence d ,Iy IQ x= ∫  
giving the solution 

 ( ) 1 d .y x IQ x
I

= ∫  

The function ( )I x  is called an integrating factor because knowledge of this enables the 
equation to be solved. 

de P xI ∫=
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Example 3.3.1 

(a)  Find the integrating factor of the differential equation 2d ,  where 0.
d
y y x x
x x
− = >   

 
(b)  Hence find 

  (i)  the general solution, 
 (ii)  the particular solution satisfying the condition ( )1 0.y =  
 
Solution 
 

In this case 1 .P x= −   Hence, using the formula obtained above, the integrating factor is 

 

1 d

ln

1
ln

e

e

e

1

1 ,      since 0.

xx

x

x

I

x

xx

−

−

−

∫=

=

=

=

= >

 

 
Multiplying each side of the differential equation by the integrating factor gives 

 2
d1 ,d

y y xx x x
− =  

which can be rewritten as 

 d .d
y xx x

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

Note that the left-hand side of this equation is ( )d ,d Iyx  as it should be. The above 

equation can be integrated at once giving 

 21 ,2
y x Cx = +  

where C is an arbitrary constant.  The general solution of the differential equation is 
therefore 

 ( )21 .2y x x C= +  

 
Applying the condition ( )1 0y =  gives 

 10 .2 C= +  

Hence ( )21 1  and   1 .2 2C y x x= − = −  

 

(a) 

(b)(i) 

(ii) 
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There are some points to note about the application of this method. 

• If the differential equation considered in Example 3.3.1 had been given in the form 
3d ,d

yx y xx − =  it would have been necessary, as a first step, to divide through by x to express 

it in the standard form d .d
y Py Qx + =   It is essential to do this before attempting to find the 

integrating factor. 

• When the integrating factor I has been found, it is the standard form that is multiplied 
through by I, not the original form. 

• When finding I, it will often be necessary to use the fact that ( ) ( )ln fe f ,x x=  as in 
Example 3.3.1. 

• When the differential equation (in standard form) is multiplied through by the integrating 
factor I, the left-hand side should then be expressible as ( )d .d Iyx   

 

Example 3.3.2 

Find the solution of the differential equation 

 ( ) ( )d πcos sin 1, 0 ,d 2
yx x y xx + = ≤ <  

satisfying the boundary condition ( )0 1.y =  
 
Solution 
 
In standard form, the differential equation is  

 ( )d tan sec .d
y x y xx + =  

The integrating factor is 

 tan d ln sece e sec .x x xI x∫= = =  

Since sec 0x >  when π0 , sec .2x I x≤ < =  

Multiplying the differential equation (in standard form) throughout by sec x  gives 

 ( ) ( ) 2dsec sec tan sec ,d
yx x x y xx + =  

which can be written as ( ) 2d sec sec .d y x xx =  

Hence,  sec tan ,y x x C= +  

where C is an arbitrary constant.  In terms of sin x  and cos ,x  this can be expressed as 

 sin cos ,y x C x= +  

and this is the general solution for y. 

Applying the boundary condition, ( )0 1,y =  gives 1 .C=  Hence 
 sin cos .y x x= +  
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Exercise 3C 

1. (a) Find the integrating factor of the differential equation d 2 4 , 0.d
y y x xx x+ = >  

 (b) Hence find the general solution. 
 
 

2. (a) Find the general solution of the differential equation 2d 2 e .d
xy yx + =  

 (b) Hence find the particular solution satisfying the condition ( )0 0.y =  
 
 
3. Solve the differential equation 

   2 d 1,d
yx xyx + =  

 where 0,x >  subject to the condition that ( )1 0.y =  
 
 
4. Find the general solution of the differential equation 

   3d 2 ,d
yx y xx − =  

 where 0.x >  
 
 
5. (a) Show that sin x  is an integrating factor of the differential equation 

   ( )d cot , 0 π.d
y x y x xx + = < <  

 (b) Hence find 

   (i) the general solution, 

  (ii) the particular solution satisfying the condition ( )π 0.2y =  

 
6. Find the solution of the differential equation 

   ( )d πtan 1, ,d 2
y x y xx − = <  

 which is such that ( )0 1.y =  
 
 

7. (a) Find the general solution of the differential equation  2d e , 0.d
xy y x xx x

−− = >  

 (b) Hence find the particular solution which is such that y remains finite as .x →∞  
 
 
8. A curve is such that at any point ( ),x y  on it, its gradient is .y x−   The curve passes through 

the point ( )0, 2 .   Find the equation of the curve. 
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3.4 Complementary functions and particular integrals 

Linear differential equations in which the coefficients of y and its derivatives are constants 
occur frequently.  The general first order differential equation of this type has the form 

 ( )d f ,d
ya by xx + =  

where a and b are constants.  Such equations can be solved by finding an integrating factor but 
there is an alternative method which is sometimes easier to apply.  The alternative method also 
has the advantage that it can be used to solve higher order linear differential equations with 
constant coefficients.  These will be dealt with in Chapter 5. 
 
To understand the essentials of this alternative method, consider the particular case 

 d 2 e .d
xy yx + =  

The first step is to replace the right-hand side by zero giving 

 d 2 0.d
y yx + =  

 
This is called the reduced equation.  Rewriting it as 

 d 2 ,d
y yx = −  

it can be seen that it is a standard decay equation for which the general solution is 
 2e ,xy C −=  
where C is an arbitrary constant. (See Exercise 3B, Question 1.) 
 
The next step is to try to find, by trial or inspection, a particular solution of the complete 
equation 

 d 2 e .d
xy yx + =  

Any function that satisfies this equation is sufficient.  In this case, the form of the right-hand 
side suggests that exy A=  is tried, where A is a constant to be found.  Substituting this into the 
differential equation gives 
 e 2 e e .x x xA A+ =  

The terms in ex  cancel giving 1 .3A =   Hence 1 e3
xy =  is a particular solution. 

The final step is to add the general solution of the reduced equation and the particular solution 
of the complete equation.  This gives 

 2 1e e .3
x xy C −= +  

It is easy to verify that this function satisfies the complete equation (check this).  As it also 
contains an arbitrary constant it is the required general solution. 
 
The general solution of the reduced equation is called the complementary function, and the 
particular solution of the complete equation is called a particular integral.  The sum of the 
two gives the required general solution of the complete equation.  These terms are often 
abbreviated to CF, PI and GS, respectively. 



klmGCE Further Mathematics (6370)                        Further Pure 3 (MFP3) Textbook  
 

 
66 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In practice, finding a CF is straightforward, as it was in the example above.  However, finding a 
PI is generally much more difficult and only when ( )f x  takes certain simple forms is it likely 

to be possible � this is the main drawback of this method.  Fortunately, in applications ( )f x  is 
often of a simple exponential, trigonometric or polynomial form and in these cases a PI can be 
found by using an appropriate trial function, as follows.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Only the above cases and simple combinations of them need to be considered for the purposes 
of this course. 
 
 

The steps in the procedure for solving differential equations of the form 

 ( )d fd
ya by xx + =  

can be summarised as follows. 

• Find the GS of the reduced equation d 0.d
ya byx + =   This solution is the CF, C.y  

• Find a particular solution of the complete equation ( )d fd
ya by xx + = . 

This function is a PI, P.y  

• The GS of the complete equation is then C P.y y y= +  

• If ( )f x  is of the form e ,kxc  where c and k are constants,  try a PI of the form 

e ,kxy a=  where a is a constant to be found.  The example used at the beginning of 
this section (to explain the method) illustrates this case. 
This fails when the CF has the same exponential form as the right-hand side of the 
differential equation.  However, it will then be found that the trial function 

ekxy ax=  will provide a PI.  Example 3.4.3 covers this more difficult case.  

• If ( )f x  is of the form cos  or sin ,c kx c kx  try a PI of the form cos sin ,y a kx b kx= +
where a and b are constants to be found. 

• If ( )f x  is a polynomial of degree n, try a PI of the form 1 ,n ny ax bx −= + +"  
where a, b, � are constants to be found. 
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Example 3.4.1 

Find a PI of the differential equation d sin .d
y y xx + =  

 
Solution 
 
The appropriate trial function is 
 cos sin .y a x b x= +  

Substituting this into the differential equation gives 

 sin cos cos sin sin ,a x b x a x b x x− + + + =  

i.e. ( ) ( )cos sin sin .b a x b a x x+ + − =  

The constants a and b must be chosen so that 0 and 1.b a b a+ = − =   This gives 
1 1 and .2 2a b= − =   Hence, the required PI is 

 1 1cos sin .2 2y x x= − +  
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Example 3.4.2 

Solve the differential equation 2d 2 2 3,d
y y xx + = +  given that ( )0 5.y =  

 
Solution 
 

The reduced equation is d 2 0d
y yx + =  for which the GS is 2e ,xy C −=  where C is an arbitrary 

constant.  This is the CF. 

The right-hand side of the complete equation is a polynomial of degree 2, so the appropriate 
trial function for a PI is 
 2 .y ax bx c= + +  
Differentiating this gives 

 d 2 .d
y ax bx = +  

Substituting these expressions for y and d
d
y
x  into the complete equation gives 

 2 22 2 2 2 2 3.ax b ax bx c x+ + + + = +  

This may be expressed more conveniently as 
 ( )2 22 2 2 2 3.ax a b x b c x+ + + + = +  

Hence, comparing coefficients, 

 ( )
2 2,

2 0,
2 3.

a
a b
b c

=

+ =

+ =

 

Thus 1, 1 and 2.a b c= = − =  
 
The PI is therefore 2 2.y x x= − +  

Adding the CF and the PI, the GS of the complete equation is therefore 

 2 2e 2.xy C x x−= + − +  

Applying the condition ( )0 5y =  gives 5 2C= +  and hence 3.C =   The required solution is 
therefore 
 2 23e 2.xy x x−= + − +  
 
Note that a common mistake is to apply the end condition ( )0 5 in the example abovey⎡ ⎤=⎣ ⎦  to 
the CF (i.e. to the GS of the reduced equation).  It is essential to apply the end condition to the 
GS of the complete equation. 
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Example 3.4.3 

Find the CF and a PI of the differential equation 
1
2d2 3e .d

xy yx − =   Hence write down the GS. 

 
Solution 
 

The reduced equation is d2 0,d
y yx − =  

i.e. d 1 .d 2
y yx =  

 

The GS of this is 
1
2e xy C=  and this is the required CF of the complete equation. 

 
To find a PI, note first that the CF has the same exponential form as the right-hand side of the 

given differential equation.  The appropriate trial function for the PI is therefore not 
1
2e xa  but 

 
1
2e .xy ax=  

Differentiating this using the product rule gives 

 
1 1
2 2d 1 e e .d 2

x xy ax ax = +  

Substituting y and d
d
y
x  into the complete differential equation, 

 
1 1 1 1
2 2 2 2e 2 e e 3e .x x x xax a ax+ − =  

The terms in 
1
2e xax  cancel and it can be seen that 3 .2a =   Hence the PI is 

 
1
23 e .2

xy x=  

The GS of the complete equation is therefore 

 
11
22 3e e .2

xxy C x= +  
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Note: It is interesting to see why the trial function 
1
2e xy a=  will not provide a PI in this case. 

Substituting this into the differential equation gives 

 ( )1 1 1
2 2 212 e e 3e .2

x x xa a− =  

However, the left-hand side is zero so there is no value of a for which the differential equation 

can be satisfied.  Of course, the left-hand side must be zero because 
1
2e xa  is a solution of the 

reduced equation! 
 
 
 
 
Exercise 3D 

1. Find a particular integral of each of these differential equations. 

 (a) 2d 3 9 1d
y y xx + = +  (b)  d2 3d

y y xx − = −  

 (c) d 3 sin 2cosd
y y x xx + = +  (d)  d2 2cosd

y y xx − =  

 (e) 3d 3 3ed
xy yx + =  (f)  3d 3 3ed

xy yx − =  

 (g) d2 4 8 ed
xy y xx

−+ = +  

 
 
 
2. (a) Find the complementary function and a particular integral of the differential equation 

  d 3 6.d
y yx − =  

 (b) Hence obtain the solution satisfying the condition ( )1 0.y =  
 
 
 
3. (a) Find the complementary function and a particular integral of the differential equation 

  2d 2 e .d
xy yx − =  

 (b) Hence obtain the solution satisfying the condition ( )0 2.y =  
 
 
 
4. Solve the differential equation 

  d sin 2 ,d
y y xx + =  

 subject to the condition ( )0 1.y =  
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3.5 Transformations of non-linear differential equations to linear form 

It is sometimes possible to transform a first order non-linear differential equation into one of 
first order linear form by means of a suitable substitution.  If the solution of the transformed 
equation can be found, the solution of the non-linear equation can be deduced from it.  The 
example which follows shows how this technique may be used. 
 
Example 3.5.1 

The function ( )y x  satisfies the differential equation d 2 2 , 1.d
y y x y xx x= + ≥  

(a)  Show that the substitution 2y u=  transforms the differential equation into d .d
u u xx x− =  

(b)  Find the general solution for u. 

(c)  Hence obtain the solution for y satisfying the boundary condition ( )1 0.y =  
 
Solution 
 

Differentiating each side of 2y u=  with respect to x gives d d2 .d d
y uux x=  

Hence the differential equation transforms to 

 
2d 22 2 ,d

u uu xux x= +  

which can be written as d .d
u u xx x− =  

 
 
The integrating factor for the differential equation above is 

 ( )
1 d ln 1 1e e 1 .

x xx x x xxx
− −∫ = = = ≥ ⇒ =  

Multiplying the differential equation throughout by this factor gives 

 2
1 d 1.d

u u
x x x

− =  

Hence, ( )d 1,d
u

x x =  

which gives ,u x Cx = +  

where C is an arbitrary constant.  The general solution for u is therefore 
 ( ).u x x C= +  
 
Since 2 ,y u=  the general solution for y is 

 ( )22 .y x x C= +  

Applying the boundary condition, ( )1 0,y =  gives ( )20 1 .C= +  Hence 1C = −  and 

therefore  ( )22 1 .y x x= −  

(a) 

(b) 

(c) 
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Exercise 3E 

1. (a) Show that the substitution 1y u=  transforms the differential equation 

   2d 2 ,d
y y yx x− = −  

  where 0,  intox >  

   d 2.d
u u
x x+ =  

 
 (b) Obtain the general solution for u and hence the general solution for y. 
 
 
2. (a) Show that the substitution y x u− =  transforms the differential equation 

   d e 1d
y xy

x
−+ =  

  into d e 0.d
uu

x + =  

  
 (b) Find the general solution for u. 
 
 (c) Hence obtain the solution for y satisfying the condition ( )0 0.y =  
 
 (d) State the range of values of x for which the solution in part (c) is valid. 
 
 
3. The function ( )y x  satisfies the differential equation 

   2
d e 2 , 1.d

yy xx xx
+ = ≥  

 (a) Show that the substitution lny u= −  transforms the differential equation into 

   2
d 2 1 .d
u u
x x x
+ =  

 
 (b)  Obtain the general solution for u. 
 
 (c)  Hence obtain the solution for y satisfying the boundary condition ( )1 0.y =  
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Miscellaneous exercises 3 

 
1. (a) Show that the integrating factor of the differential equation 

   ( )d πtan 2 cos , 0 ,d 2
y x y x x xx + = ≤ <   

  is 1 .cos x  

 
 (b) Hence obtain the solution for y satisfying the boundary condition that ( )0 3.y =  

[AQA 1999] 
 
 

2. (a) For the differential equation d sin ,d
y y xx + =  find 

   (i)  the complementary function, 

  (ii)  a particular integral. 
 
 (b) Hence, or otherwise, solve the equation given that 1 when 0.y x= =  

[JMB 1991] 
 
 
3. A curve C in the x�y plane passes through the point ( )1,0 .   At any point ( ),x y  on C, 

   d e .d
xy yx

−+ =  

 
 (a) Find the general solution of this differential equation. 
 
 (b)  (i)  Hence find the equation of C, giving your answer in the form ( )f .y x=  

  (ii)  Write down the equation of the asymptote of C. 
[NEAB 1998] 

 
 
4. (a) Show that the integrating factor of the differential equation 

   d 1 , 1,d 1
y y x xx x− = >

−
 

  is 1 .1x −  

 
 (b) Find the solution of this differential equation, given that ( )2 1.y =   Express your answer 

in the form ( )f .y x=  
[AQA 2001] 
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5. The differential equation   3d 2 8d
y y xx + =  has a particular integral of the form 

   3 2 ,ax bx cx d+ + +  

 where a, b, c and d are constants. 
 
 (a) Find the values of a, b, c and d. 

 (b) Find the complementary function. 

 (c) Obtain the solution of the differential equation which satisfies the condition ( )0 0.y =  
 
 
6. A curve in the region 0x >  of the x�y plane is such that the tangent at every point ( ),x y  on 

it intersects the y-axis at ( )0, .x  

 (a) Show that d .d
yx y xx = −  

 
 (b) Hence find the equation of the curve which possesses this property and which passes 

through the point ( )1, 2 .−  
 
 (c) Show that this curve approaches the origin as 0.x →  

[NEAB 1994] 
 
 

7. (a) Show that the substitution 1y u=  transforms the differential equation 

   2d ln , 0,d
yx y y x xx + = >  

  into the differential equation 

   d ln .d
u u x
x x x− = −  

 
 (b) Find the general solution of the equation for u. 
 

 (c) Hence find y in terms of x, given that 1 when 1.2y x= =  

[JMB 1988] 
 

8. (a) Show that the substitution 
1
3y u

−
=  transforms the differential equation 

   3 4d 2 ,d
yy x x yx− =  

  where 0,x >  into 

   2d 3 6 .d
u u xx x+ =  

 
 (b) Use the above result to find the general solution of the differential equation for y. 

[JMB 1990] 
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Chapter 4: Numerical Methods for the Solution of First 
Order Differential Equations 
4.1  Introduction 

4.2 Euler�s formula 

4.3 The mid-point formula 

4.4 The improved Euler formula 

4.5 Error analysis: some practical considerations 

 
 
 
 
 
 
 
This chapter gives an introduction to numerical methods for solving first order differential 
equations.  When you have completed it, you will: 
 
• be familiar with the standard notation used; 
• be familiar with the methods which use Euler�s formula, the mid-point formula and Euler�s 

improved formula; 
• know how the above formulae can be derived both geometrically and analytically; 
• be aware of the principal sources of error in the methods described; 
• know how the accuracy of a numerical solution can be estimated. 
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4.1 Introduction 

Although many of the differential equations which result from modelling real-world problems 
can be solved analytically, there are many others which cannot.  In general, when the modelling 
leads to a linear differential equation, the prospects of obtaining an exact mathematical 
solution are good.  However, non-linear differential equations present much greater difficulty 
and exact solutions can seldom be obtained.  There is a need, therefore, for numerical methods 
that can provide approximate solutions to problems which would otherwise be intractable. The 
advent of powerful computers capable of performing calculations at very high speed has led to 
a rapid development in this area and there are now many numerical methods available. 
 
This chapter is concerned with numerical methods for solving differential equations of the form 

 ( )d f , ,d
y x yx =  

subject to boundary conditions of the form 
 ( )0 0.y x y=  

In each case, the solution ( ) ,y x  valid for 0 ,x x≥  is required. 
 
Suppose that the graph of the exact solution is as shown in the diagram below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let 0 1 2, , ,x x x "  be points on the x-axis which are equally spaced at a distance h apart.  Denote 
the values of ( ) ( ) ( )0 1 2, , ,y x y x y x "  by 1 2 3, , ,y y y "  and let P0, P1, P2, �  be the points on 

the curve with coordinates ( ) ( ) ( )0 0 1 1 2 2, , , , , , ,x y x y x y "  respectively.  In general therefore, 

( ) ,r ry x y=  where 0 ,rx x rh= +  and Pr is the point with coordinates ( ), .r rx y  
 

O 

 y 

 x  x0  x1  x2  x3 x4 xr�1 xr xr+1

Pr�1

Pr+1Pr

P4

 P3 
 P2 

 P1 
P0 

 y0  y1 yr�1 y2  y3 y4 yr yr+1

 h  h  h  h h h
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The basic idea of all the numerical methods is to use a step-by-step procedure to obtain 
approximations to the values of 1 2 3, , ,y y y "  successively.  The interval, h, between 
successive x-values is called the step length.  Some of the methods of obtaining these 
approximations are suggested by geometrical considerations of the graph.  Three such methods 
will be described in the sections that follow.  Later in the chapter, consideration will be given to 
the accuracy of the values obtained. 
 
It is important to become thoroughly familiar with the standard notation introduced above.  
Exercise 4A will help with this. 
 
 
Exercise 4A 

Suppose that the differential equation to be solved is 

 3 3d , 1,d
y x y xx = + ≥  

and that the boundary condition is ( )1 2.y =  

Suppose also that the values of  ( ) ( )1.1 , 1.2 ,y y  ( ), 2.0y" are required.  In this case: 

(a)  state the values of  0 0 1 2, , ,  and ;x y h x x  

(b)  state which of the values of y that are required correspond to 1 10and ;y y  

(c)  evaluate ( )0 0f , .x y  
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4.2 Euler�s formula 

Consider again the diagram in Section 4.1.  One simple way of obtaining an approximation to 
the value of 1y  is to assume that the part of the curve between P0 and P1 is a straight line 

segment with gradient equal to the gradient of the curve at P0.  Since ( )d f , ,d
y x yx =  the gradient 

of the curve at P0 is ( )0 0f , .x y   Hence, with this approximation, 

 ( )1 0
0 0f , ,y y x yh

−
=  

giving ( )1 0 0 0f , .y y h x y= +  
 
Using this approximation to obtain the value of y at P1, the process can be repeated, assuming 
that the part of the curve between P1 and P2 is a straight line segment with gradient equal to the 

value of d
d
y
x  at P1.  This gives 

 ( )2 1 1 1f , .y y h x y= +  

Continuing in this way gives, in general, 

 ( )1 f , , 0,1, 2, .r r r ry y h x y r+ = + = "  
 
This is Euler�s formula.  Successive calculation of values of  y using this formula is known as 
Euler�s method.  It is clear from the nature of the linear approximation on which this method 
is based that the step length h needs to be fairly small to achieve reasonable accuracy. 
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Example 4.2.1 

The function ( )y x  satisfies the differential equation 

 ( )d sind
y x yx = +  

and the condition ( )1 0.y =   

Use Euler�s formula to estimate the values of ( ) ( ) ( )1.1 , 1.2  and 1.3 ,y y y  giving the answers to 
four decimal places. 
 
Solution 
 
In this case, ( ) ( )0 01, 0, 0.1 and f , sin .x y h x y x y= = = = +  

Also ( ) 11.1 ,y y=  ( ) 21.2y y=  and ( ) 31.3 .y y=  
Using Euler�s formula: 

 

( )1 0 0 0sin
0.1sin1
0.084147
0.0841 to four d.p.

y y h x y= + +

=
≈
=

 

 

( )
( )

2 1 1 1sin

0.084147 0.1sin 1.1 0.084147
0.176765
0.1768 to four d.p.

y y h x y= + +

= + +

≈
=

 

 

( )
( )

3 2 2 2sin

0.176765 0.1sin 1.2 0.176765
0.274889
0.2749 to four d.p.

y y h x y= + +

= + +

≈
=

 

Note that at each stage after the first in the above calculations, the previous value of y to six 
decimal places is used instead of the four-decimal place rounded answer.  If this is not done, 
accuracy to four decimal places is not guaranteed.  For example, the use of 1 0.0841y =  would 
have given 2 0.1767.y =   It is recommended that working is always carried out to two decimal 
places more than the number of decimal places required in the final answer. 
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Exercise 4B 

1. The function ( )y x  satisfies the differential equation 

   ( )d lnd
y x yx = +  

 and the condition ( )1 1.y =  
 Use Euler�s formula with a step length of 0.1 to obtain approximations to the values of 

( ) ( ) ( ) ( ) ( )1.1 , 1.2 , 1.3 , 1.4  and 1.5 .y y y y y  Give your answers to three decimal places. 
 
2. The function ( )y x  satisfies the differential equation 

   d
d
yy x yx = +  

 and the condition ( )0 1.y =  

 Use Euler�s method with a step length of 0.25 to obtain an estimate of the value of ( )1 .y   
Give your answer to three decimal places. 

 
3. The function ( )y x  satisfies the differential equation 

   ( )d f ,d
y x yx =  

 where ( ) ( )2f , e e .x yx y = +  

 The value of ( )0y  is zero. 

 (a) Use of the Euler formula gave 1 0.05.y =   Determine the value that was used for the step 
length h . 

 (b) Show that, with this value for h, the Euler formula gives 2 0.103y =  to three decimal 
places. 

 (c) Calculate the value of 3y  to three decimal places. 
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4.3 The mid-point formula 

The diagram below shows three points, Pr�1, Pr and Pr+1, on part of the curve representing the 

solution of the differential equation ( )d f , .d
y x yx =  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Provided that the three points are reasonably close together, the gradient of the line segment 
joining Pr�1 and Pr+1 will be approximately the same as the gradient of the tangent to the curve 

at Pr .  Since ( )d f ,d r r
y x yx =  at Pr , this approximation gives 

 ( )1 1 f , .2
r r

r r
y y x yh
+ −−

=  

 
Hence, ( )1 1 2 f , .r r r ry y h x y+ −= +   

This is the mid-point formula. 
 
As with Euler�s formula, the mid-point formula can be used to calculate values of y 
successively, but at each stage the previous two values of y are required.  In particular, putting 

1r =  gives 
 ( )2 0 1 12 f , .y y h x y= +  

Since only the value of 0y  is known initially, it is necessary to calculate 1y  by some other 
method before the application of the mid-point formula can begin.  Euler�s formula may be 
used for this purpose. 
 
It will be shown later that, for a given step length h, the mid-point formula is more accurate 
than Euler�s formula. 
 
 

O 

 y 

 x xr�1 xr+1xr 

yr�1 yr+1yr 

h h 

Pr�1

Pr+1 Pr 
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Example 4.3.1 

The function ( )y x  satisfies the differential equation 

 d 1d
y xyx = +  

and the condition ( )0 1.y =  

Use the mid-point formula with a step length of 0.25 to obtain an approximate value for ( )1y  

to three decimal places.  Take ( )0.25y  to be the value given by Euler�s formula. 
 
Solution 
 
In this case, ( )0 00, 1, 0.25 and f , 1 .x y h x y xy= = = = +  
 
Using Euler�s formula, 

 

( ) ( )
( )

1 0 0 00.25 1

1 0.25 1
1.25.

y y y h x y= = + +

= + ×

=

 

 
The mid-point formula gives: 

 

( ) ( )
( )

2 0 1 10.5 2 1

1 0.5 1 0.25 1.25

1.77951

y y y h x y= = + +

= + + ×

≈

 

 

 

( ) ( )
( )

3 1 2 20.75 2 1

1.25 0.5 1 0.5 1.77951

2.22163

y y y h x y= = + +

= + + ×

≈

 

 

 

( ) ( )
( )

4 2 3 31 2 1

1.77951 0.5 1 0.75 2.22163

2.92492
2.925  to three decimal places.

y y y h x y= = + +

= + + ×

≈
=
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Exercise 4C 

1. The function ( )y x  satisfies the differential equation 

 3 3d
d
y x yx = +  

 and the condition ( )1 1.y =  
 
 (a) Using a step length of 0.1 in the Euler formula 
 ( )1 f , ,r r r ry y h x y+ = +  
  obtain estimates of the values of y when 1.1x =  and 1.2.x =  
 
 (b) Use the mid-point formula, 
 ( )1 1 2 f , ,r r r ry y h x y+ −= +  
  with 0.1h =  and your value of 1y  obtained in part (a), to calculate an improved estimate 

of the value of y when 1.2.x =  
 
 
2. The function ( )y x  satisfies the differential equation 

   d cosd
y xyx =  

 and the condition ( )1 2.y =  
 
 (a) Verify that the Euler formula with a step length of 0.25 gives ( )1.25 1.89596y =  to five 

decimal places. 
 
 (b) Use the mid-point formula with a step length of 0.25 to obtain an estimate of the value 

of ( )2 .y   Give your answer to three decimal places. 
 
 
3. The function ( )y x  satisfies the differential equation 

 ( )
1

2 2 2d 1d
y x yx = + +  

 and the condition ( )0 0.y =  
 
 (a) Given that in this case 1 1,y y− = − show that the mid-point formula gives 1 ,y h= where h 

is the step length. 
 
 (b) Use the mid-point formula with 0.1h =  to obtain an approximation to the value of 

( )0.5 .y   Give your answer to three decimal places. 
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4.4 The improved Euler formula 

The Euler formula derived in Section 4.2 is based on the assumption that the gradient of the 
line segment joining any two successive points, rP  and 1,rP +  on the graph of ( )y x  is equal to 

the value of d
d
y
x  at .rP   Another formula, which is considerably more accurate than Euler�s, can 

be obtained by assuming that the gradient of 1r rP P +  is equal to the average of the values of d
d
y
x  

at rP  and 1.rP +   With this assumption, 

 ( ) ( )1
1 1

1 f , f , .2
r r

r r r r
y y x y x yh
+

+ +
−

⎡ ⎤= +⎣ ⎦  

Hence, ( ) ( )1 1 1f , f , .2r r r r r r
hy y x y x y+ + +⎡ ⎤= + +⎣ ⎦  

 
This formula cannot be used directly to calculate 1ry +  because 1ry +  is needed in order to 
evaluate ( )1 1f ,r rx y+ + on the right-hand side.  To overcome this problem, 1ry +  on the right-hand 

side is replaced by a first estimate, denoted by *
1 ,ry +  giving 

 ( ) ( )*1 1 1f , f , .2r r r r r r
hy y x y x y+ + +
⎡ ⎤= + +⎣ ⎦  

There are a number of ways of obtaining a value for *
1 .ry +  The simplest is to use Euler�s 

formula, giving 
 ( )*

1 f , .r r r ry y h x y+ = +  
 
Using this expression together with the previous one for 1ry +  constitutes the improved Euler 
method.  It is sometimes called a predictor�corrector method because Euler�s formula gives an 
initial prediction of 1ry +  and this is followed by the calculation of a corrected value.  Note, 
however, that �corrected� here should not be interpreted literally � the new value of 1ry +  will 
almost invariably be more accurate than the first estimate, but as the method is based on 
approximations there will still be some error involved. 
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Example 4.4.1 

The function ( )y x  satisfies the differential equation 

 ( )d ln , 1.d
y x y xx = + ≥  

 
The boundary condition is ( )1 1.y =  Use the improved Euler method with a step length of 0.25 

to estimate the value of ( )1.5y  to three decimal places. 
 
Solution 
 
In this case, ( ) ( )0 01, 1, 0.25 and f , ln .x y h x y x y= = = = +  
Using Euler�s formula, the first estimate of 1y  is 

 
( )*

1 0 0 0ln
1 0.25ln 2
1.17329.

y y h x y= + +

= +
≈

 

Hence, using the expression derived above for 1,ry +  with 0,r =  

 

( ) ( )
( )

*1 0 0 0 1 1ln ln2
1 0.125 ln 2 ln 1.25 1.17329

1.19728.

hy y x y x y⎡ ⎤= + + + +⎣ ⎦
⎡ ⎤= + + +⎣ ⎦

≈

 

 
Observe that the �corrected� value, 1,y  differs from the first estimate, *

1,y  as is to be expected. 
 
The procedure can now be repeated to obtain 2y  (i.e. the value of ( )1.5y ).  Using Euler�s 
formula, the initial estimate is  

 
( )

( )
*2 1 1 1ln

1.19728 0.25ln 1.25 1.19728
1.42102.

y y h x y= + +

= + +

≈

 

 

Hence, ( ) ( )
( ) ( )

*
2 1 1 1 2 2ln ln2

1.19728 0.125 ln 1.25 1.19728 ln 1.5 1.42102

1.443.

hy y x y x y⎡ ⎤= + + + +⎣ ⎦
⎡ ⎤= + + + +⎣ ⎦

≈

 

 
Again, note that 2y  differs slightly from *2.y  
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Alternative way of applying Euler�s improved method 
The formulae comprising the improved Euler method can be expressed in a different way.  
Substituting the expression obtained for *

1ry +  into the expression for 1ry +  gives 

 ( ) ( )( )1 1f , f , f , .2r r r r r r r r
hy y x y x y h x y+ +⎡ ⎤= + + +⎣ ⎦  

 
Noting that 1 ,r rx x h+ = +  this can be expressed as 

 ( )1 1 2
1 ,2r ry y k k+ = + +  

where ( )1 f ,r rk h x y=  

and ( )2 1f , .r rk h x h y k= + +  
 
These expressions are quoted in the AQA Formulae Booklet, together with Euler�s formula.  
The example which follows shows how these expressions can be used as an alternative to the 
procedure used in Example 4.4.1 . 
 
Example 4.4.2 

The function ( )y x  satisfies the differential equation 

 ( )d f , ,d
y x yx =  

where  ( ) 2f , 2 3 2 , 0.x y x y x= + − ≥  

The boundary condition is ( )0 5.y =  

(a) Use the improved Euler method, with 0.25,h =  to calculate approximations to the values 
of ( )0.25y  and ( )0.5 .y  

(b) The exact solution of the differential equation (obtained in Chapter 3, example 3.4.2) is 

 ( ) 2 23e 2.xy x x x−= + − +  

 Calculate, to two significant figures, the percentage error in the value of ( )0.5y  obtained 
in part (a). 

 
Solution 

 
The solution can be conveniently set out in tabular form. 

 

r xr yr k1 rx h+  1ry k+  k2 1ry +  

0 0 5 �1.75 0.25 3.25 �0.84375 3.703125 

1 0.25 3.703125 �1.0703125 0.5 2.6328125 �0.44140625 2.947266 

(a) 
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The entries on the first row are obtained as follows.  It is given that ( )0 5,y =  which 
implies that 0 0x =  and 0 5.y = The formula for 1,k with 0,r =  gives  
 ( )

( )
1 0 0

2
0 0

f ,

0.25 2 3 2

1.75.

k h x y

x y

=

= + −

= −

 

The next two entries in the table are 0 0.25x h+ =  and 0 1 3.25.y k+ =   The formula for 2 ,k  
with 0,r =  gives 
 ( )

( ) ( ){ }
2

2

0.25f 0.25, 3.25

0.25 2 0.25 3 2 3.25

0.84375.

k =

= + − ×

= −

 

 
The formula for 1,ry +  with 0,r =  gives 

 ( )

( )

1 0 1 2
1
2

15 1.75 0.843752
3.703125.

y y k k= + +

= + − −

=

 

On the second row, the first two entries are 1 0 0.25x x h= + =  and 1 3.703125y =  
(transferred from row 1).  Then 
 ( )

( ) ( ){ }
1 1 1

2

f ,

0.25 2 0.25 3 2 3.703125

1.0703125.

k h x y=

= × + − ×

= −

 

The entries for 1x h+  and 1 1y k+  are straightforward with the values as shown.  These give
 ( )

( ) ( )
2

2

0.25f 0.5, 2.6328125

0.25 2 0.5 3 2 2.6328125

0.44140625.

k =

⎡ ⎤= × + − ×⎣ ⎦
= −

 

Finally,  ( )

( )

2 1 1 2
1
2

13.703125 1.511718752
2.947266 to six d.p.

y y k k= + +

= + −

=

 

 
The exact solution quoted gives 

 ( ) 1 2
2 0.5 3e 0.5 0.5 2

2.853638 to six d.p.
y y −= = + − +

=
 

 
Hence the error in the value obtained in part (a) is 

 2.947266 2.853638 100% 3.3%.2.853638
− × ≈  

(b) 
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Exercise 4D 

1. The function ( )y x  satisfies the differential equation 

  ( )d lnd
y xyx =  

 and the condition (2) 1.y =   An estimate of the value of ( )3y  to three decimal places is 
required. 

 (a) Use the improved Euler method with a step length of 0.25 to obtain this estimate, setting 
out your working in a similar way to that of Example 4.4.1. 

 
 (b) Repeat the calculations using the alternative method of working as shown in 

Example 4.4.2. 
 
 
2. The function ( )y x  satisfies the differential equation 

   
2 2d ed

x yy
x

+=  

 and the condition (0) 0.y =  

 Use the improved Euler method with a step length of 0.2 to obtain an approximate value of 
( )0.4 .y   Give your answer to three decimal places. 

 
 
3. The function ( )y x  satisfies the differential equation 

   ( )d f , ,d
y x yx =  

 where ( ) ( )2f , cos .x y x y= +  
 When 1, 1.x y= =  
 
 (a) Use the Euler formula with a step length of 0.1 to obtain an estimate of the value of 

( )1.1 .y  
 
 (b) Obtain a second estimate of the value of ( )1.1y  by using the improved Euler formula 

 ( ) ( )*1 1 1f , f ,2r r r r r r
hy y x y x y+ + +
⎡ ⎤= + +⎣ ⎦  

  taking *
1y  to be the value obtained for the first estimate of ( )1.1y  in part (a). 

 
 (c) Repeat the calculation in part (b) to obtain a third estimate of the value of ( )1.1 ,y  taking 

*
1y  to be the value obtained for the second estimate. 

 
 (d) Verify that the second and third estimates of ( )1.1y  are in agreement to three decimal 

places. 
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4.5 Error analysis: some practical considerations 

The three numerical formulae that were used for solving the differential equation ( )d f ,d
y x yx =  

were derived by geometrical considerations.  They can also be derived analytically.  There is 
some advantage in this alternative method because it enables some insight to be gained into the 
errors involved in the approximations. 
 
The Maclaurin series for ( )y h  is 

 ( ) ( ) ( ) ( ) ( )
2 3

0 0 0 0 ,2! 3!
h hy h y h y y y′ ′′ ′′′= + + + +…  

where, as usual, , , ,y y y′ ′′ ′′′…  denote derivatives of first order, second order, third order, � .  If 
the origin is transferred to the point ,rx  this becomes 

 ( ) ( ) ( ) ( ) ( )
2 3

,2! 3!r r r r r
h hy x h y x h y x y x y x′ ′′ ′′′+ = + + + +…  

 

which is Taylor�s series.  (See also exercise 1B, question 6). 
 
Using the notation introduced in Section 4.1, and noting that ( ) ( )f , ,r r ry x x y′ =  the Taylor 
series may be expressed as 

 ( ) ( ) ( )
2 3

1 f , .2! 3!r r r r r r
h hy y h x y y x y x+ ′′ ′′′= + + + +…  

If h is assumed to be sufficiently small for terms in 2 3, ,h h "  to be negligible, then the series 
reduces to  
 ( )1 f , ,r r r ry y h x y+ = +  
which is Euler�s formula. 
 
Taylor�s series can also be used to step backwards from ( )1to   1r rx x r− ≥  by replacing h by 

.h−   This gives 

 ( ) ( ) ( )
2 3

1 f , .2! 3!r r r r r r
h hy y h x y y x y x− ′′ ′′′= − + − +…   

Subtracting this from the series for 1ry +  and neglecting all terms in 3h  and higher powers, 
gives 
 ( ) ( )1 1 2 f , , 1 .r r r ry y h x y r+ −= + ≥  
This is the mid-point formula derived in Section 4.3. 
 
To obtain the improved Euler formula, first replace y by y′  in the Taylor series.  This gives 

 ( ) ( ) ( ) ( )
2

,2!r r r r
hy x h y x h y x y x′ ′ ′′ ′′′+ = + + +…  

which may be expressed as 

 ( ) ( ) ( ) ( )
2

1 1f , f , .2!r r r r r r
hx y x y h y x y x+ + ′′ ′′′= + + +…  

 



klmGCE Further Mathematics (6370)                        Further Pure 3 (MFP3) Textbook  
 

 
90 

Multiplying each side of this equation by 1
2 h  and subtracting the result from the above Taylor 

series for 1ry +  gives 

 ( ) ( )1 1 1f , f ,2 2r r r r r r
h hy x y y x y+ + +− = +  + terms in 3h and higher powers. 

 
If the terms in 3h  and higher powers are neglected, this becomes, after rearrangement, 

 ( ) ( )1 1 1f , f , .2r r r r r r
hy y x y x y+ + +⎡ ⎤= + +⎣ ⎦  

This is the improved Euler formula. 
 
The error incurred by neglecting terms in an expansion is called the truncation error.  The 
derivations above show that the truncation error in Euler�s formula is greater than that in the 
mid-point formula and the improved Euler formula because an extra term (that in 2h ) is 
neglected.  Hence, for a given step length h, Euler�s method cannot be expected to achieve the 
same accuracy as the other two methods. 
 
In addition to the truncation error, for all values of 1,r ≥  another error will be incurred in the 
calculation of 1ry +  because an approximate value of ry  has to be used in the evaluation of 

( )f , .r rx y   For example, whichever method is used, in order to calculate 2y , the value of 

( )1 1f ,x y  is required and only an approximate value of 1y  is available.  As the calculation of y-
values progresses, errors of this type sometimes decay but they can also sometimes become 
increasingly large.  In the latter case, it will usually become apparent by wildly erratic 
behaviour of the solution being generated � the method is then said to be unstable. 
 
It is often difficult to determine with complete certainty the accuracy of y-values that have been 
calculated by a numerical method.  However, improved accuracy is almost invariably achieved 
by using a smaller step length, though this is at the expense of having to take more steps to 
reach a given end point.  To estimate the order of accuracy of a solution, the usual procedure is 
to reduce the step length to half its previous value and repeat the calculations.  If  the results 
obtained are the same to, say, three decimal places, then it is usually safe to assume that they 
are correct to this order of accuracy. 
 
Of the three methods discussed, Euler�s improved method is best as it achieves reasonable 
accuracy and has a good record for stability.  It is, in fact, the simplest of a class of methods � 
called Runge-Kutta methods � which are amongst the most reliable. 
 
In practice, nowadays all numerical methods for solving differential equations are programmed 
to be carried out on a computer.  It is therefore relatively easy to experiment with different 
formulae and to see how changing the step length affects the solution generated. 
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Exercise 4E 

1. The function ( )y x  satisfies the differential equation 

   d 2d
y y
x x= +  

 and the condition ( )1 0.y =  

 (a) Apply Euler�s formula twice with a step length of 0.2 to calculate the value of ( )1.4y  to 
three decimal places. 

 (b) Repeat the calculations using four steps with a step length of 0.1. 

 (c) Use the mid-point formula with a step length of 0.2 to obtain the value of ( )1.4y  to 

three decimal places.  Take the value of ( )1.2y  to be that obtained in part (a). 

 (d) Use the improved Euler method with a step length of 0.2 to obtain the value of ( )1.4y  
to three decimal places. 

 (e) Verify that the exact solution of this problem is 2 ln .y x x=  

 (f) Hence calculate, to one decimal place, the percentage errors in the values of 
( )1.4y obtained in parts (a) � (d). 

 (g) Comment on the results of the error calculations in part (f).  
 
 
2 Use Taylor�s series to show that 

   ( ) ( ) ( ) ( )
2

.2!r r r r
hy x h y x h y x y x′ ′ ′′ ′′′− = − + +"  

 Deduce that, when ( ) ( )f , ,y x x y′ =  

  ( ) ( ) ( ) 2
1 1f , f ,  terms in  and higher powers.r r r r rh y x x y x y h− −′′ = − +  

 Hence show that when terms in 3h  and higher powers are neglected, 

   ( ) ( )1 1 1+ 3f , f , .2r r r r r r
hy y x y x y+ − −⎡ ⎤= −⎣ ⎦  

 
 
3. The expression for 1ry +  obtained in Question 2 is just one of several other formulae that 

may be used to obtain numerical solutions of differential equations of the form 

( )d f , .d
y x yx =  

 
 (a) Apply this formula to the problem in Question 1 above, using a step length of 0.2, to 

calculate the value of ( )1.4 .y   Take the value of ( )1.2y  to be that obtained using 
Euler�s formula with a step length of 0.2. 

 
 (b) By continuing the calculation with a step length of 0.2, show that the formula gives 

( )2.0 2.722.y ≈  
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Miscellaneous exercises 4 

1. The function ( )y x  satisfies the differential equation 

   ( )
1

3 3 2d
d
y x yx = +  

 and the condition ( )1 0.5.y =  
 
 (a) Use the Euler formula, 
    ( )1 f , ,r r r ry y h x y+ = +  

  with 0.1,h =  to show that ( )1.1 0.606y = to three decimal places. 
 
 (b)  Use the mid-point formula, 
   ( )1 1 2 f , ,r r r ry y h x y+ −= +  

  with 0.1,h =  to find an approximate value for ( )1.3y  giving your answer to three 
  decimal places. 

[AQA, 2001] 
 
 
2. The function ( )y x  satisfies the differential equation 

   ( )d 4d
y x y yx = + −  

 and the condition ( )1 2.y =  
 
 (a) Use the Euler formula, 
    ( )1 f , ,r r r ry y h x y+ = +  
  to show that 
   ( ) ( )1 2 1 .y h h+ ≈ −  
 
 (b)  (i)  Denoting the value for ( )1y h+  obtained in part (a) by *

1 ,y  show that 

    ( ) ( )* 2
1 1f , 2 1 .x y h= − −  

  (ii)  Hence obtain an improved estimate for the value of ( )1y h+  using the formula 

   ( ) ( )*1
1 1 12 f , f ,r r r r r ry y h x y x y+ + +

⎡ ⎤= + +⎣ ⎦  

         giving your answer in the form 

   ( ) 31 ,a h bh− +  

        where a and b are numbers to be found. 
[AQA, 2000] 

 



klmGCE Further Mathematics (6370)                        Further Pure 3 (MFP3) Textbook  
 

 
93 

3. (a)   (i)   Show that the integrating factor of the differential equation 

   2 2
d 1 , 1,d 1 1

y x y xx x x
− = <

− −
 

         is 21 .x−  
 
   (ii)  Hence, or otherwise, solve the differential equation given that  0x =  when 0.y =  
 

  (iii)  Show that when 0.5,x =  π .
3 3

y =  

 
 (b) The above differential equation may be written as  

   ( )d f , ,d
y x yx =  

  where ( ) 2
1f , .
1

xyx y
x

+=
−

 

   
  The table below shows approximate values of y obtained using the improved Euler 

formula 
   ( )1

1 1 22 ,r ry y k k+ = + +  

  where ( )1 f ,r rk h x y=  

  and ( )2 1f , .r rk h x h y k= + +  
 

x 0 0.1 0.2 0.3 0.4 
y 0 0.1010101 0.2062236 0.3205873 0.4508417 

 
  Use the improved Euler formula, with 0.1,h =  to calculate an approximate value of y at 

0.5x =  giving your answer to five decimal places. 
 
 (c) Use the answer to part (a)(iii) to find the percentage error in your answer to part (b). 

[AQA, 2001] 
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4. The electric current ( )C t  flowing in a circuit at time t due to an applied voltage ( )V t  is 
modelled by the differential equation 

   ( )d 2 .d
C C V tt + =  

 The initial condition is ( )0 0.C =  
 
 (a) In the case when ( ) 2e ,tV t −=  find an explicit expression for ( ).C t  
 
 (b) In the case when ( )

2
e ,tV t −=  an explicit expression for ( )C t  cannot be found.  Letting 

( )
2

f , e 2 ,tt C C−= −  

   (i)  use the Euler formula 
   ( )1 f , ,r r r rC C h t C+ = +  

               with 0.1,h =  to find an approximate value for ( )0.1 ;C  

  (ii)  use the mid-point formula, 
   ( )1 1 2 f , ,r r r rC C h t C+ −= +  

           with 0.1h =  and your result from (i) to find approximate values for ( )0.2C  

          and ( )0.3 .C  
[NEAB, 1996] 

 
 
5.  As part of a project, a student investigates the accuracy of numerical methods for solving 

differential equations of the form 

   ( )d f , .d
y x yx =  

 He chooses as a test function, 
   ( ) 2f , e xx y y −=  

 and uses the boundary condition ( )0 1.y =  
 Calculations are performed using two procedures, each with a step length of 0.2.h =   The 

results are shown in the tables below, but two values have been omitted. 
 
 (a) Table 1 shows the results obtained using the Euler formula 
   ( )1 f , .r r r ry y h x y+ = +  
  Table 1 

r 0 1 2 3 4 5 

rx  0 0.2 0.4 0.6 0.8 1.0 

ry  1.000000 1.200000  1.712168 2.033939 2.405705 
 
  Calculate the missing value. 
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 (b) Table 2 shows the results obtained using the improved Euler formula 
   ( )1

1 1 22 ,r ry y k k+ = + +  

  where  ( )1 f ,r rk h x y=  

  and  ( )2 1f , .r rk h x h y k= + +  
 
  Table 2 

r 0 1 2 3 4 5 

rx  0 0.2 0.4 0.6 0.8 1.0 

ry  1.000000  1.482375 1.802968 2.190964 2.659637 
 
  Calculate the missing value. 
 (c) (i)  Use the method of separation of variables to find the exact solution for ( ).y x  
 
  (ii) Hence find, correct to one decimal place, the percentage error for each of the values 
        of ( )1y  given in parts (a) and (b). 

[NEAB, 1997] 
 
 
6. The function ( )y x  satisfies the differential equation 

   ( )d f , ,d
y x yx =  

 where ( )f , .x y x y= +   When 1, 1.x y= =  
 
 (a) Show that one application of Euler�s formula 
   ( )1 f , ,r r r ry y h x y+ = +  

  with a step length of 0.25, gives ( )1.25 1.35355.y ≈  
 
 (b) Use the formula 

   ( ) ( )1 1 13f , f , ,2r r r r r r
hy y x y x y+ − −⎡ ⎤= + −⎣ ⎦  

  with a step length of 0.25, to estimate the value of y when 2x =  giving your answer to 
three decimal places.  Take 1y  to be the value obtained in part (a). 

 
 (c) Suggest how a more accurate estimate of the value of y when 2x =  could be obtained 

using the above formulae. 
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Chapter 5: Second Order Differential Equations 
5.1  Introduction to complex numbers 

5.2 Working with complex numbers 

5.3 Euler�s identity 

5.4 Formation of second order differential equations 

5.5 Differential equations of the form 
2

2
d d 0dd

y ya b cyxx
+ + =  

5.6 Differential equations of the form ( )
2

2
d d fdd

y ya b cy xxx
+ + =  

5.7 Solution of second order differential equations by reduction to simultaneous first order 
differential equations 

 
 
This chapter deals with analytical methods for solving second order linear differential equations 
with constant coefficients.  When you have completed it, you will: 
 
• have been introduced to the concept of complex numbers, which prove useful in the 

analytical methods described; 
• know sufficient about complex numbers, including Euler�s identity, for the purposes of this 

chapter; 

• be able to solve differential equations of the form 
2

2
d d 0dd

y ya b cyxx
+ + = using the auxiliary 

equation 2 0;ak bk c+ + =  

• be able to solve differential equations of the form ( )
2

2
d d fdd

y ya b cy xxx
+ + =  by finding a 

complementary function and a particular integral; 

• know how second order linear differential equations can be solved by reduction to 
simultaneous first order linear differential equations. 
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5.1 Introduction to complex numbers 

You will already have discovered that some algebraic equations have roots that cannot be 
expressed in terms of real numbers.  A simple example is the quadratic equation 2 9 0,x + =  
which gives 2 9x = −  and therefore 9.x = ± −   There is no real number with its square equal to 

9−  and so 9−  cannot be evaluated. 
 
This problem can be overcome by introducing a new number i, called the imaginary unit, 
defined as i 1.= −   In terms of this unit, the solution of the equation 2 9 0x + =  can be 
expressed as  
 ( )9 1 3 1 3i.x = ± × − = ± − = ±  
The number 3i is a special case of a complex number. 
 
 
 
 
 
Thus 1 i, 2 i, 3i and 2 3i+ − + are all examples of complex numbers. 
 
The set of all complex numbers is denoted by .#   When 0,b =  ia b+  reduces to the real 
number a, so #  includes the set $  of all real numbers.  Numbers of the form bi, where 0,b ≠  
are said to be imaginary.  The number a is called the  real part of  i ,a b+  and b is called the 
imaginary part.  
 
Extending the number system to include new types has been a notable feature of the 
development of mathematics from earliest times and has often been controversial.  Even as late 
as the seventeenth century, negative numbers were regarded with suspicion by some eminent 
mathematicians, though it was conceded that they were �a useful aid to calculation�.  It is hardly 
surprising, therefore, to find that there was some resistance to the concept of complex numbers.  
Though the concept first appeared in 1572 in a book written by the Italian mathematician 
Raphael Bombelli, it was not until the nineteenth century that complex numbers can be said to 
have been completely accepted.  The symbol i, to denote 1,−  was introduced by the Swiss 
mathematician Leonhard Euler in the mid-eighteeenth century. 
 
In this chapter you will see how complex numbers can be useful in solving certain types of 
differential equations.  Only a little knowledge of the concept is needed; all that is required for 
the purpose of this chapter is covered in the two sections which follow. 
 
 
 

A complex number is defined as one which has the form 
i ,a b+  where a and b are real and i 1= −  



klmGCE Further Mathematics (6370)                        Further Pure 3 (MFP3) Textbook  
 

 
98 

5.2 Working with complex numbers 

Complex numbers are added, subtracted and multiplied in much the same way as ordinary 
algebraic expressions, treating i as an algebraic quantity.  However, since i 1= −  and hence 

2i 1,= −  2i  can be replaced by 1−  wherever it occurs.  The following examples show the 
processes involved. 
 
Example 5.2.1 

The complex numbers 1 2 and z z  are given by 

 1 21 2i, 2 3i.z z= + = − +  

Find, in the form i ,a b+  
(a)  1 2 ,z z+      (b)  1 2 ,z z−      (c) 1 23 2 ,z z−      (d)  1 2 ,z z      (e) 2 2

1 2 .z z+  
 
Solution 
 

1 2 1 2i 2 3i
1 5i.

z z+ = + − +
= − +

 ( )1 2 1 2i 2 3i
1 2i 2 3i
3 i.

z z− = + − − +

= + + −
= −

 

 
 

( ) ( )1 23 2 3 1 2i 2 2 3i
3 6i 4 6i
7.

z z− = + − − +

= + + −
=

 ( )( )
( )

1 2

2

1 2i 2 3i

2 3i 2i 2 3i

2 3i 4i 6i
2 i 6
8 i.

z z = + − +

= − + + − +

= − + − +
= − − −
= − −

 

 
 

( ) ( )2 22 2
1 2

2 2

1 2i 2 3i

1 4i 4i 4 12i 9i
1 4i 4 4 12i 9

8 8i.

z z+ = + + − +

= + + + − +
= + − + − −
= − −

 

 
 

(a) (b)

(c) (d)

(e) 
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Example 5.2.2 

Find, in the form i ,a b±  the values of x satisfying the equation 

 ( )22 4 0.x + + =  
 
Solution 
 
The equation can be rewritten as ( )22 4.x + = −  

Hence ( )2 4
2i

x + = ± −

= ±

 

giving 2 2i.x = − ±  
 
 
 
Example 5.2.3 

Solve the quadratic equation 22 2 3 0x x+ + =  giving the roots in the form i .a b±  
 
Solution 
 
Using the formula for the roots of a quadratic equation, 

 

( )2 4 4 2 3
4

2 20
4

2 20 i
4

2 2 5 i
4

1 5 i.2 2

x
− ± − × ×

=

− ± −=

− ±=

− ±
=

= − ±
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Exercise 5A 

1. The complex numbers 1 2 and z z  are given by 
 1 22 i, 1 3i.z z= + = −  

 Find, in the form i :a b+  
 (a)  1 2 ,z z−  (b)  1 23 ,z z+  (c) 1 2 ,z z  

 (d) 2 2
1 2 ,z z+  (e) 2 2

1 2 ,z z−  (f) 2 2
1 2 .z z  

 
 
2. Show that 
 (a)  ( )21 i+  is imaginary, 

 (b)  ( )41 i+  is real, 

 (c)  ( )3 5i 2i 3i+  is real. 

 
 
3. Find the real and imaginary parts of 

 (a) ( )( )i 1 2i 1 3i ,− +         (b)  ( )31 1 i .2 +  

 
 
4. Solve the quadratic equation 
   ( )23 4 0.x − + =  
 
 
5. (a) Express each of the roots of the equation 

   2 1 0x x+ + =  

  in the form i .a b+  

 (b) Denoting the two roots by  and ,α β  use your answers to part (a) to verify that 
1α β+ = −  and 1.αβ =  
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5.3 Euler�s identity 

This identity, named after Euler but discovered by others, states that 
 
 
 
 
The identity can be proved using series expansions.  The left-hand side is 

 
( ) ( ) ( ) ( )2 3 4 5

i

2 2 3 3 4 4 5 5

i i i i
e 1 i 2! 3! 4! 5!

i i i i1 i 2! 3! 4! 5!

x x x x x
x

x x x xx

= + + + + + +

= + + + + + +

"

"
 

 

Now ( )22 3 2 4 2i 1, i i i i, i i 1,= − = × = − = =   5 4i i i i,= × =  and the same sequence of results (�

1, �i, 1 and i) is generated repeatedly when higher powers (i6, i7, �) are calculated.  
Substituting these expressions into the above expansion and collecting together real and 
imaginary parts gives 

 
2 4 3 5

ie 1 i .2! 4! 3! 5!
x x x x xx⎛ ⎞ ⎛ ⎞= − + − + − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
" "  

The two expressions in brackets are the series for cos  and sin ,x x  and hence 
 ie cos i sin .x x x≡ +  

The special case when πx =  is of particular interest.  As cos π 1 and sin π 0,= − =  substituting 
πx =  in Euler�s identity gives 

 
 
 
This is a famous equation connecting e, π and i, three of the most important numbers in 
mathematics, in an elegant and most unexpected way. 
 
 

Example 5.3.1 

Find the real and imaginary parts of 
 i i3e 2e .x x−+  
 
Solution 
 
Note first that 

 ( )ie cos i sin
cos i sin .

x x x
x x

− = + −

= −
 

Hence ( ) ( )i i3e 2e 3 cos i sin 2 cos i sin
5cos i sin .

x x x x x x
x x

−+ = + + −

= +

 

The real and imaginary parts are therefore 5cos x  and sin ,x  respectively. 
 

 iπe 1= −

 ie cos i sin ,x x x x≡ + ∈$
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Example 5.3.2 

The function ( )y x  is given by 

 ( ) ( ) ( )2 3i 2 3ie e ,x xy x A B+ −= +  

where A and B are constants.  Show that this can be expressed as 

 ( ) ( )2e cos3 sin 3 ,xy x C x D x= +  

where C and D are constants. 
 
Solution 
 

 

( ) ( ) ( )
( ) ( )
( ) ( )

2 3i 2 3i

2 2

2

e e e e

e cos3 isin 3 e cos3 isin 3

e cos3 isin 3 .

x x x x

x x

x

y x A B

A x x B x x

A B x A B x

−= × + ×

= + + −

⎡ ⎤= + + −⎣ ⎦

 

Writing A B C+ =  and ( ) i ,A B D− =  this becomes 

 ( ) ( )2e cos3 sin 3 .xy x C x D x= +  
 
Exercise 5B 

1. (a) Use Euler�s identity to show that 
iπ
2e i.=  

 (b) Hence show that ii 0.2079.≈  
 
 
2. Find the real and imaginary parts of ( ) ( )1 2i 1 2ie 3e .x x+ −+  
 
 
3. (a) The function ( )y x  is given by 

   ( ) ( ) ( )1 i 1 ie e ,x xy x A B− − − += +  

  where A and B are constants.  Show that this can be expressed as 

   ( ) ( )e cos sin ,xy x C x D x−= +  

  where C and D are constants to be found in terms of A and B. 
 
 (b) Given that iA α β= +  and i ,B α β= −  where and α β  are real, show that C and D are 

real. 
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5.4 Formation of second order differential equations 

Consider the function  2e e ,x xy A B x−= + −  where A and B are arbitrary constants.  
Differentiating twice with respect to x gives 

 2d e 2 e 1,d
x xy A Bx

−= − −  

and 
2

2
2

d e 4 e .
d

x xy A B
x

−= +  

 
There are now three equations involving A and B and it is therefore possible to eliminate these 
arbitrary constants.  From the first and second equations above, 

 2d 3 e 1,d
xyy B xx

−− = − +  

and from the second and third equations, 

 
2

2
2

d d 6 e 1.dd
xy y Bxx

−− = +  

Hence,                      ( )
2

2
d d d2 1 2 1d dd

y y yy xx xx
⎛ ⎞− − − = − − +⎜ ⎟
⎝ ⎠

 

giving          
2

2
d d 2 2 1.dd

y y y xxx
+ − = −  

 
This shows that the function y satisfies the differential equation above whatever the values of A 
and B; y is, in fact, the general solution as will be shown later. 
 

The coefficients of 
2

2
d d,  and dd

y y yxx
 in the differential equation above are constants (1, 1 and 

 �2, respectively).  Second order differential equations of the form  ( )
2

2
d d f ,dd

y ya b cy xxx
+ + =  

where a, b and c are constants, have important applications in modelling real-world problems, 
especially in relation to studies of vibrations of mechanical systems.  The example shows how 
such a differential equation can be derived from its general solution, but in practice it is the 
differential equation that is given and the problem is to obtain the general solution.  Also, a 
particular solution satisfying specified boundary conditions is usually required. 
 
The general solution, ( ) ,y x  of a second order differential equation must contain exactly two 
arbitrary constants.  If the general solution contained just one arbitrary constant, C, it would be 

possible to eliminate C using only the expressions for y and d .d
y
x   The differential equation 

satisfied by y would then be of first order.  If the general solution contained three arbitrary 

constants, then the expressions for 
2 3

2 3
d d d, ,  and d d d
y y yy x x x

 would be needed to eliminate these 

constants so the differential equation for y would be of third order.  Similarly, the possibility 
that the general solution contains more than three arbitrary constants can be ruled out. 
 
Sections 5.5, 5.6 and 5.7 show how second order linear differential equations with constant 
coefficients can be solved analytically.
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Example 5.4.1 
The function y is given by  ( )e ,xy Ax B −= +  where A and B are arbitrary constants.  Obtain the 
second order differential equation satisfied by y. 
 
Solution 
 
Using the product rule, the first and second derivatives of y are 

 ( )d e e ,d
x xy A Ax Bx

− −= − +  

and ( )

( )

2

2
d e e e
d

2 e e .

x x x

x x

y A A Ax B
x

A Ax B

− − −

− −

= − − + +

= − + +

 

Eliminating Ax B+  from the expressions for y and d
d
y
x  gives 

 d e .d
xyy Ax

−+ =  

Similarly, eliminating Ax B+  from the expressions for 
2

2
d d and d d
y y
x x

 gives 

 
2

2
d d e .d d

xy y Ax x
−+ = −  

Hence, by addition of these expressions, 

 
2

2
d d2 0.dd

y y yxx
+ + =  

 
Exercise 5C 

1. The function y is given by 
   2cos sin e ,xy A x B x −= + +  
 where A and B are arbitrary constants.  Show that y satisfies the differential equation 

   
2

2
2

d 5e .
d

xy y
x

−+ =  

 
2. The function y is given by 
   e cos e sin ,x xy A x B x= +  
 where A and B are arbitrary constants. 

 (a) Find 
2

2
d d and .d d
y y
x x

  

 (b) Hence show that y satisfies the differential equation 

   
2

2
d d2 2 0.dd

y y yxx
− + =  

 
3. The function y is given by 
   ( ) 2e 1,xy Ax B= + +  
 where A and B are arbitrary constants.  Find the differential equation satisfied by y. 
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5.5 Differential equations of the form 
2

2
d d+ + = 0dd
y ya b cyxx

 

This section deals with second order differential equations of the form 
2

2
d d 0,dd

y ya b cyxx
+ + =  

where a, b and c are given constants.  Note that 0a ≠  because otherwise the differential 
equation would be of first order.  The form of the general solution of differential equations of 
this type can be derived by a method which reduces the problem to one of solving first order 
linear differential equations. 
 
Consider the quadratic equation 
 2 0,ak bk c+ + =  
the coefficients of which are the same as those in the differential equation above.  This 
quadratic is called the auxiliary equation.  Let the roots be 1 2and .k k   Then 

 1 2 1 2and .b ck k k ka a+ = − =  

The key step in the derivation of the general solution of the differential equation is to put 

 2
d .d

yu k yx= −  

Then 

 

( )

2

1 2 1 22

2

1 2 1 22

2

2

2

2

d d dd
d d dd

d d
dd

d d
dd

d d1 ( ), 0,dd
0.

y y yu k u k k k yx x xx
y yk k k k yxx
y yb c ya x ax

y ya b cy aa xx

⎛ ⎞− = − − −⎜ ⎟
⎝ ⎠

= − + +

= + +

= + + ≠

=  
 
Hence, the new variable u satisfies the first order differential equation 

 1
d .d
u k ux =  

As shown in Chapter 3 (Exercise 3B), this has the general solution 1e ,k xu C=  where C is an 
arbitrary constant. 
 
Substituting this expression into that which defined u in terms of y gives 

 1
2

d e .d
k xy k y Cx − =  

 
This is another  first order differential equation of a type covered in Chapter 3.  It is solved by 

using the integrating factor  2 2
de e .k x k x− −∫ =  
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Multiplying the differential equation through by this factor gives 

 ( )1 22 2
2

de e e ,d
k k xk x k xy k y Cx
−− −− =  

which can be written as 

 ( ) ( )1 22d e e .d
k k xk x y Cx
−− =  

 
There are now two cases to consider. 
 
 
 
 
When 2 1,k k≠  the integral of the differential equation above is 

 ( )1 22

1 2
,k k xk x Ce y e Bk k

−− = +
−

 

where B is an arbitrary constant.  Writing 
1 2

C
k k−  as A, this may be expressed as 

 1 2e e .k x k xy A B= +  

This is, therefore, the form of the general solution when the auxiliary equation has unequal 
roots. 
 
 
 
In this case, the roots of the auxiliary equation are equal and the differential equation for y 
reduces to 

 ( )1d e .d
k x y Cx

− =  

Hence, 1e ,k x y Cx D− = +  

where C and D are arbitrary constants.  The general solution in this case is therefore 

 ( ) 1e .k xy Cx D= +  
 
Example 5.5.1 

Find the general solution of the differential equation 

 
2

2
d d5 6 0.dd

y y yxx
− + =  

 

Solution 
 
The auxiliary equation is 
 2 5 6 0.k k− + =  
Hence,  ( )( )2 3 0,k k− − =  
so the roots are 2 and 3.k k= =   The general solution of the differential equation is therefore 

 2 3e e ,x xy A B= +  

where A and B are arbitrary constants.

2 1k k≠  

2 1k k=  
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Example 5.5.2 
 
Find the general solution of the differential equation 

 
2

2
d d4 4 0.dd

y y yxx
+ + =  

 
Solution 
 
The auxiliary equation is 
 2 4 4 0.k k+ + =  
Hence,  ( )22 0,k + =  
so the roots are both equal to �2.  The general solution of the differential equation is therefore 

 ( ) 2e ,xy Ax B −= +  

where A and B are arbitrary constants. 
 
 
Example 5.5.3 

Find the general solution of the differential equation 

 
2

2
d d2 5 0.dd

y y yxx
+ + =  

Express the answer in a form involving trigonometric functions. 
 
Solution 
 
The auxiliary equation is 
 2 2 5 0.k k+ + =  

Hence,  2 4 20
2

2 4i
2

1 2i.

k − ± −=

− ±=

= − ±

 

 
The general solution of the differential equation is therefore 

 

( ) ( )

( )
( ) ( )

1 2i 1 2i

2i 2i

e e

e e e

e cos 2 isin 2 cos 2 i sin 2 .

x x

x x x

x

y A B

A B

A x x B x x

− + − −

− −

−

= +

= +

⎡ ⎤= + + −⎣ ⎦

 

Hence, writing  as  and i i as ,A B C A B D+ −  
 ( )e cos 2 sin 2 ,xy C x D x−= +  
where C and D are arbitrary constants. 
 
The example above shows that when the roots of the auxiliary equation are not real, the general 
solution can still be expressed in a form not involving complex numbers. 
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In general, suppose that the roots of the auxiliary equation are 

 1 2i , i ,k p q k p q= + = −  

where p and q are real and 0.q ≠   Then the general solution is 

 

( ) ( )

( )
( ) ( )

( )

i i

i i

e e

e e e

e cos i sin cos i sin

e cos sin ,

p q x p q x

px qx qx

px

px

y A B

A B

A qx qx B qx qx

C qx D qx

+ −

−

= +

= +

⎡ ⎤= + + −⎣ ⎦

= +

 

where C and D are arbitrary constants. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The special case when the differential equation is of the form 

 
2

2
2

d 0,
d

y n x
x

+ =  

where n is a real number, is of particular interest.  You may recognise this as the differential 
equation governing simple harmonic motion, and it occurs in other circumstances too.  The 
auxiliary equation is 2 2 0,k n+ =  which has the roots i  and i .k n k n= = −   In this case therefore, 

0 and p q n= =  so the general solution is 
 
 
 
This is well worth remembering. 

The method for solving differential equations of the form 
2

2
d d 0dd

y ya b cyxx
+ + =  can now be 

summarised as follows. 
 
1. Obtain the roots of the auxiliary equation 
   2 0.ak bk c+ + =  

2. If the roots of the auxiliary equation are 1 2and k k  and these are real and unequal, then the 
general solution is 

   1 2e e .k x k xy A B= +  

3. If the roots of the auxiliary equation are equal, having the value 1,k  then the general 
solution is 

   ( )1e .k xy A Bx= +  

4. If the roots of the auxiliary equation are non-real and have the values ip q+  and i ,p q−  
then the general solution is 

   ( )e cos sin .pxy A qx B qx= +  

 In each of the solutions above, A and B are arbitrary constants. 
 

You should memorise the form of the general solution in each of these cases 

cos siny A nx B nx= +  



klmGCE Further Mathematics (6370)                        Further Pure 3 (MFP3) Textbook  
 

 
109 

Finally, it should be noted that the auxiliary equation can be derived by substituting ekxy =  
into the differential equation 

 
2

2
d d 0.dd

y ya b cyxx
+ + =  

This gives  2e e e 0,kx kx kxak bk c+ + =  
and hence 2 0.ak bk c+ + =  
 
This shows that ekx  will be a solution of the differential equation provided that k is a root of the 
auxiliary equation.  When there are two distinct roots, 1 2and ,k k each of the functions 1ek x  and 

2ek x  will therefore be solutions. 
 
It can be verified by direct substitution into the differential equation that the linear combination 
 1 2e e ,k x k xy A B= +  
where A and B are arbitrary constants, is also a solution in this case.  This is, of course, 
identical to the general solution derived earlier. 
 
When the roots of the auxiliary equation are equal, having the value 1,k  1ek x  is the only 

solution of exponential form.  However, in this case it can be verified that 1ek xx  will also be a 
solution (see Exercise 5D, question 6).  The linear combination 

 1 1 1e e ( )k x k x k xy Cx D Cx D e= + = + , 

where C and D are arbitrary constants, then provides the general solution. 
 
The method used earlier proves that the above are the only possible forms for the general 
solution. 
 
 
Example 5.5.4 

Find the solution of the differential equation 

 
2

2
d d4 4 5 0dd

y y yxx
− + =  

satisfying the conditions that 1y =  and d 0d
y
x =  when 0.x =  

 
Solution 
 
The auxiliary equation is 24 4 5 0.k k− + =   Hence 

 

4 16 80
8

4 8i
8

1 i.2

k ± −=

±=

= ±
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The general solution is therefore 

 ( )2e cos sin .
x

y A x B x= +  

This follows because the roots of the auxiliary equation are of the form i ,p q±  with 1
2p =  and 

1.q =  
 
Using the product rule to differentiate y with respect to x, 

 ( ) ( )2 2d 1 e cos sin e sin cos .d 2

x xy A x B x A x B xx = + + − +  

 

The condition 1y =  when 0x =  gives 1 ,A=  and the condition d 0d
y
x =  when 0x =  gives 

10 .2 A B= +  Hence 1 .2B = −   The required solution is therefore 

 ( )2 1e cos sin .2

x
y x x= −  

 
 
Exercise 5D 

1. (a) Write down the general solution of the differential equation 

   
2

2
d π9 0, 0 .2d

y y x
x

+ = ≤ ≤  

 
 (b) Hence find the particular solution satisfying the boundary conditions ( )0 1y =  and 

( )π 2.2y =  

 
2. Find the general solution of each of the following differential equations. 

 (a)  
2

2
d d 6 0.dd

y y yxx
− − =  (b) 

2

2
d d9 6 0.dd

y y yxx
− + =  

 (c) 
2

2
d d6 10 0.dd

y y yxx
− + =  (d) 

2

2
d d4 12 9 0.dd

y y yxx
+ + =  

 (e) 
2

2
d d2 6 5 0.dd

y y yxx
+ + =  (f) 

2

2
d d6 0.dd

y y
xx

− =  

 
 
3. (a) Find the general solution of the differential equation 

   
2

2
d4 0.
d

y y
x

− =  

 (b) Hence find the particular solution which is such that 1y =  and d 0d
y
x = when 0.x =  
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4. Solve the differential equation 

   
2

2
d d4 4 0dd

y y yxx
− + =  

 subject to the conditions that 1y =  and d 1d
y
x = when 0.x =  

 
 
5. Find the function ( )y x  satisfying the differential equation 

   
2

2
d d2 5 0dd

y y yxx
− + =  

 and the conditions that 0y =  and d 1d
y
x = when 0.x =  

 
 

6. (a) Show that when 2 4 ,b ac=  the roots of the auxiliary equation for the differential 
equation 

   
2

2
d d 0dd

y ya b cyxx
+ + =  

  are both equal to .2
b
a−  

 

 (b) Writing 1 as ,2
b ka−  verify that, in this case, 1 1e  and ek x k xx  are solutions of the 

differential equation. 
 
 
 

7. Show that if 1 2 and y y  are solutions of the differential equation 

   
2

2
d d 0,dd

y ya b cyxx
+ + =  

 then so also is the linear combination 1 2 ,y Ay By= +  where A and B are arbitrary constants. 
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5.6 Differential equations of the form ( )
2

2
d d+ + = fdd
y ya b cy xxx

 

In Chapter 3 it was shown how first order differential equations of the form 

 ( )d fd
ya by xx + =  

can be solved by finding a complementary function (CF) and a particular integral (PI).  The 
same method can be used to solve second order differential equations of the form 

 ( )
2

2
d d f ,dd

y ya b cy xxx
+ + =  

where a, b and c are given constants and f is a given function of x.  The procedure is as follows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The reduced equation is of the form dealt with in Section 5.5 � the CF is therefore found by 
applying the methods explained there. 
 
As with first order differential equations, a PI is found by substituting an appropriate trial 
function into the differential equation.  The trial function depends on the form of the function 
( )f x  on the right-hand side of the differential equation, and contains at least one constant to be 

chosen so that the differential equation is satisfied. 
 

1. Find the general solution (GS) of the reduced equation 

   
2

2
d d 0.dd

y ya b cyxx
+ + =  

 This solution is the CF, c.y  
 
2. Find a particular solution of the complete equation 

   ( )
2

2
d d f .dd

y ya b cy xxx
+ + =  

 This solution is a PI, p.y  
 
3. The GS of the complete equation is then 
   c p.y y y= +  
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Only certain forms of ( )f x  are included in the Further Pure 3 unit.  For these cases, a PI can be 
found as follows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

• ( )f e ,xx C λ=  where C and λ are given constants. 
First note whether the CF contains a term of the form 

 (i) constant e xλ×      or       (ii) constant e .xx λ×  
" If it does not, then the PI will be of the form e ,xy a λ=  where a is a constant to be 

found. 
" If there is a term of type (i) in the CF but not one of type (ii), then the PI will be of 

the form e .xy ax λ=  

" If there is a term of type (ii) in the CF, then the PI will be of the form 2e .xy ax λ=  
 

• ( )f cos  or sin .x C x C xλ λ=  
" Provided that the CF is not of the form cos sin ,A x B xλ λ+  the PI will be of the 

form cos sin ,y a x b xλ λ= +  where a and b are constants to be found. 
" If the CF is of the form cos sin ,A x B xλ λ+  the PI will be of the form 

siny ax xλ=  when ( )f cos ,x C xλ=  and cosy ax xλ=  when ( )f sin .x C xλ=  
 

• ( )f x is a polynomial of degree n. 

In this case try a PI of the form 1 ,n ny ax bx −= + +…  where a, b, �  are constants to 
be found.  Thus, for example, if ( ) 3f 3x x= +  then the appropriate trial function is 

3 2 .y ax bx cx d= + + +  

This fails when the differential equation has no y term.  In this exceptional case, the 
appropriate trial function is a polynomial of degree 1.n +  
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Example 5.6.1 

The complementary function of the differential equation 

 
2

2
2

d d 6 2edd
xy y yxx

− − =  

is 3 2e e .x xA B −+  
(a)  Find a particular integral. 
(b)  Hence write down the general solution. 
 
Solution 
 

Since the CF does not contain a term of the form constant 2e ,x×  the appropriate trial 
function for a PI is 2e .xy a=   Differentiating this twice gives 

 
2

2 2
2

d d2 e , 4 e .d d
x xy ya ax x

= =  

Substituting the expressions for 
2

2
d d,  and d d
y yy x x

 into the differential equation gives 

 2 2 2 24 e 2 e 6 e 2e .x x x xa a a− − =  

Cancelling the common factor 2e x  and collecting terms gives 
 4 2a− =  

and therefore 1 .2a = −   Hence the PI is 21 e .2
xy = −  

 
The GS is obtained by adding the CF and the PI giving 

 3 2 21e e e .2
x x xy A B −= + −  

 
Example 5.6.2 

The function ( )y x  satisfies the differential equation 

 
2

2
d d 2 2e .dd

xy y yxx
−− − =  

(a)  Find the complementary function. 

(b)  Find a particular integral. 

(c)  Hence solve the differential equation given that 3y =  when 0x =  and that 0y →  as 
.x →∞  

(a) 

(b) 
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Solution 
 
To obtain the CF, the GS of the reduced equation 

  
2

2
d d 2 0dd

y y yxx
− − =  

is required.  The auxiliary equation is 

 2 2 0.k k− − =  
Hence ( )( )2 1 0,k k− + =  
giving 2 or 1.k k= = −   The CF is therefore 

 2e e ,x xy A B −= +  
where A and B are arbitrary constants. 
 
 
The right-hand side of the differential equation is 2e x−  so the PI will be of the form 

2e , e  or e .x x xa ax ax− − −  Since there is a term of the form constant e x−×  in the CF, but not 
one of the form constant e ,xx −×  the rules stated earlier indicate that the appropriate 
choice is e .xy ax −=   Differentiating this function using the product rule, 

 d e ed
x xy a axx

− −= −  

and 
2

2
d e e e
d

2 e e .

x x x

x x

y a a ax
x

a ax

− − −

− −

= − − +

= − +

 

 
Substituting these expressions into the differential equation gives 

 ( )2 e e e e 2 e 2e .x x x x x xa ax a ax ax− − − − − −− + − − − =  

The terms involving e xx −  cancel and hence 
 3 e 2e ,x xa − −− =  

giving 2 .3a = −   The PI is therefore 

 2 e .3
xy x −= −  

 
It is worth noting here that the method should always give a constant value for a.  If it 
does not then either the wrong form has been used for the PI or a mistake has been made 
in the working. 

(a) 

(b) 
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From the results of parts (a) and (b), the GS of the differential equation is 

 2 2e e e .3
x x xy A B x− −= + −  

The condition 3y =  when 0x =  gives 
 3 .A B= +  

When ,x →∞  2e ,x →∞  e 0x− →  and e 0.xx − →   Hence, to satisfy the condition that 
0y →  as ,x →∞  A must be zero.  It follows that B = 3 and therefore 

 
( )

23e e3
23 e .3

x x

x

y x

x

− −

−

= −

= −
 

 
 
Example 5.6.3 

Solve the differential equation 

 
2

2
d d2 2 5cosdd

y y y xxx
+ + =  

subject to the conditions that 1y =  and d 0d
y
x =  when 0.x =  

(c) 
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Solution 
 
The auxiliary equation is 
 2 2 2 0,k k+ + =  

which has roots 2 4 8 1 i.2k − ± −= = − ±  

The CF is therefore  ( )e cos sin .xy A x B x−= +  
 
To find a PI, note first that in this case ( )f 5cos .x x=   Hence, using the rules given earlier, the 
appropriate trial function is cos sin .y a x b x= +  The derivatives of this function are 

 d sin cosd
y a x b xx = − +  

and 
2

2
d cos sin .
d

y a x b x
x

= − −  

Substituting these expressions into the differential equation gives 
 cos sin 2 sin 2 cos 2 cos 2 sin 5cosa x b x a x b x a x b x x− − − + + + =  
and hence ( ) ( )2 cos 2 sin 5cos .a b x b a x x+ + − =  

The constants a and b must be chosen so that this equation is satisfied for all values of x. 

Hence 2 5  and  2 0,a b b a+ = − =  
giving 1 and 2.a b= =   The PI is therefore cos 2sin .y x x= +  

Adding the CF and the PI, the GS is 
 ( )e cos sin cos 2sin .xy A x B x x x−= + + +  

To complete the solution it is necessary to find the constants A and B using the given conditions 
at 0.x =  
 
The condition 1y =  when 0x =  gives 1 1.A= +   Therefore 0A =  and 
 e sin cos 2sin .xy B x x x−= + +  

Also d e sin e cos sin 2cos .d
x xy B x B x x xx

− −= − + − +  

Applying the condition that d 0d
y
x =  when 0x =  gives 0 2.B= +  

Hence 2B = −  and the required solution is 

 ( )
2e sin cos 2sin

2 1 e sin cos .

x

x

y x x x

x x

−

−

= − + +

= − +
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Exercise 5E 

1. The complementary function of the differential equation 

   ( )
2

2
d d4 4 fdd

y y y xxx
− + =  

 is ( ) 2e .xA Bx+   In each of the following cases find a particular integral, and hence write 
down the general solution of the differential equation in these cases. 

 (a)  ( )f e ,xx −=      (b)  ( ) 2f 4 6,x x= +      (c)  ( )f 25sin .x x=  
 
 
2. The function ( )y x  satisfies the differential equation 

 
2

3
2

d d6 9 e .dd
xy y yxx

− + =  

 (a) Find the complementary function. 

 (b) Show that there is a particular integral of the form 2 3e ,xy ax=  and find the appropriate 
value of a. 

 (c) Hence write down the general solution for ( ).y x  
 
 
3. Find a particular integral for the differential equation 

   
2

4
2

d d .dd
y y y xxx
+ + =  

 
4. Solve the differential equation 

   
2

2
d d 2 4dd

y y yxx
− − =  

 subject to the conditions that 0y =  when 0x =  and 2y →−  as .x →∞  
 
5. Find the solution of the differential equation 

   
2

2
d d4 5 8sindd

y y y xxx
− + =  

 satisfying the conditions that 0y =  and d 0d
y
x = when 0.x =  

 
6. The function ( )y x  satisfies the differential equation 

   
2

2
d 16 16sin 4 .
d

y y x
x

+ =  

 (a) Find the complementary function. 

 (b) Show that the differential equation has a particular integral of the form cos 4 ,y ax x=  
and find the appropriate value of a. 

 (c) Find the solution for ( )y x  which is such that 0y =  and d 1d
y
x =  when 0.x =  
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5.7 Second order linear differential equations with variable coefficients 

This concluding section deals with differential equations which can be expressed in the form 
 

2

2
d dP Q Rdd

y y yxx
+ + =  

 
where P, Q, and R are, in general, functions of x .  A particular example, which is solved as a 
worked example later in this chapter, is 
 

2

2 2
d d1 5dd

y y y
x xx x

+ + =  . 

 
In the special case when P and Q are constants and R is such that a particular integral of the 
differential equation can be found, the methods of the previous two sections of this chapter can, 
of course, be used.  However, when one or both of P and Q are variable, these methods are no 
longer applicable.  Usually, when P and/or Q are variable, finding an exact analytical solution 
of the differential equation becomes much more difficult and may well prove impossible.  
There are, however, some instances where a second order differential equation with variable 
coefficients can be transformed by a suitable substitution into a simpler one which can be 
solved by using either one of the analytical techniques described in chapter 3 or by the methods 
used in the previous two sections of this chapter.  In such cases, solving the transformed 
differential equation readily enables the solution of the original differential equation to be 
deduced. 
 
The examples and exercises which follow show how this technique is used.  You should note 
that for the purposes of this module, the substitution required to simplify a differential equation 
with variable coefficients will always be given. 
 
Example 5.7.1 
 
The function ( )y x  satisfies the differential equation 
 

2

2
d d2 0dd

y y
x xx

+ =  , 0.x >  

 

(a)  Show that the substitution d
d
y ux =  reduces the differential equation to 

 

  

d 2 0.d
u u
x x+ =  

 
(b)  Hence find the general solution for u in terms of x. 
 
(c)  Deduce the general solution for ( )y x . 
 
(d)  Find the particular solution for ( )y x  which is such that (1) 0y =  and ( ) 1y x →  
       as x →∞ . 
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Solution 
 

Since d
d
y ux = , 

2

2
d d

dd
y u

xx
= .  Hence the given differential can be expressed as 

 
d 2 0d
u u
x x+ = . 

 
 The differential equation above can be written as 
 

d 2
d
u u
x x= − . 

 
 The variables in this case can be separated giving 
 

d 2 .u dx
u x= −∫ ∫  

ln 2 lnu x C= − + , 
 

where C is an arbitrary constant.  Noting that 2 22 ln ln lnx x x= = , this equation can 
be expressed as 

 
2

2

2

2

2

ln ln ,
ln

e .
e ,

,

C

C

u x C
u x C
u x

u
x

Au
x

+ =

=

=

= ±

=

 

 
where A is now the arbitrary constant. 

 

 Since d
d
yu x= , we now have 

 

2
d
d

( ) ,

y A
x x

Ay x Bx

=

= − +
 

 
where B is another arbitrary constant.  This is the general solution for ( )y x .  Observe 
that it contains two arbitrary constants, which is as should be expected because the 
given differential equation for ( )y x  is of second order. 
 

(a) 

(b) 

(c) 

 
which gives 
 

and hence 
 
It follows that 
 
which can be written as 

and hence 

Hence 
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Using the condition ( )1 0y =  gives 0 A B= − +  and hence A B= .  It is also given that 

( ) 1y x →  as x →∞  which implies that 1B = .  The particular solution required is 
therefore  
 

( ) 1 1y x x= − +  . 

 
Example 5.7.2 
 

(a)  Use the substitution d
d
y ux =  to transform the differential equation 

 
2

2
d d1 4dd

y y
x xx

+ = , 

 
       where 0x > , into a first order differential equation in u .  Show that the general solution of 
       the transformed equation is 
 

2 Au x x= + , 

 
       where A is an arbitrary constant. 
 
(b)  Find the particular solution for y which satisfies the boundary conditions 0y =  and 

      d 0d
y
x =  when 1x = . 

(d) 
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Solution 
 

 Since d
d
y ux = , 

2

2
d d

dd
y u

xx
= .  Hence, in terms of u, the given differential equation 

            becomes 
 

d 4d
u u
x x+ = . 

 
This type of differential was dealt with in section 3.3 and can be solved by finding an 
integrating factor.  The integrating factor is 
 

1d

ln
e
e

,  since 0 .

xx

x
I

x
x x

∫=

=
=
= >

 

 
 Multiplying each side of the differential equation by x gives 
 

d 4d
ux u xx + = , 

 
 which can be written as 
 

2

d ( ) 4 .d
2 ,

ux xx
ux x A

=

= +
 

 
 where A is an arbitrary constant.  This can be expressed as 
 

2 ,Au x x= +  

 
 as required. 

(a) 

Hence 
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In order to find the particular solution for y satisfying the given boundary conditions, 

the general solution for y is needed.  Since d
d
yu x= , we have from part (a) 

 

2

d 2 .d
ln ,

y Axx x
y x A x B

= +

= + +
 

 
 where B is an arbitrary constant.  This is the general solution for y. 
 

Applying the conditions that d 0d
y
x =  and 0y =  when 1x =  gives 

0 2  and 0 1A B= + = + .  Hence 2A = − , 1B = −  and therefore the solution required is 
 

2 2 ln 1.y x x= − −  
 

Example 5.7.3 
 
(a)  Show that the substitution etx =  transforms the differential equation 
 

2

2 2

2
2

2

d d1 5dd
d 5e .
d

t

y y y
x xx x

y y
t

+ + =

+ =
 

 
(b)  Find the general solution for y in terms of t. 
 

(c)  Given that 3y =  and d 3d
y
x =  when 1x = , find y in terms of x. 

(b) 

Hence 

into 
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Solution 
 
 Using the chain rule for derivatives, 
 

d d d .d d d
d 1 1 e .  Henced d e

d
d de .d d

t
t

t

y y t
x t x
t
x x

t
y y
x t

−

−

=

= = =

=

 

 
Differentiating each side of this equation with respect to x and using the chain rule 
again gives 

 
2

2

2

2

2
2 2

2

d dd ded d dd
d de e edd
d de e .dd

t

t t t

t t

y y t
t t xx

y y
tt

y y
tt

−

− − −

− −

⎡ ⎤= ×⎢ ⎥⎣ ⎦
⎡ ⎤

= − ×⎢ ⎥
⎣ ⎦

= −

 

 

Substituting the above expressions for d
d
y
x  and 

2

2
d
d

y
x

 into the given differential equation 

and putting etx =  gives 
 

2
2 2

2 2
d d d1e e e 5 .d dd e e

t t t
t t

y y y y
t tt

− − −⎛ ⎞− + + =⎜ ⎟
⎝ ⎠

 

 
Multiplying this throughout by 2e t  it becomes 
 

2
2

2
d d d 5e .d dd

ty y y yt tt
− + + =  

2
2

2
d 5e .
d

ty y
t
+ =  

 

(a) 

Now 

Hence 
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The GS of the differential equation above is obtained by finding the CF and a PI.  The 
reduced equation is 
 

2

2
d 0 .
d

y y
t
+ =  

 
This is a standard form met before (see page 108) with GS 
 

cos siny A t B t= +  
 

where A and B are arbitrary constants.  This is the required CF. 
 
Since the CF does not contain a term of the form constant 2e t× , the appropriate trial 
function for a PI is 2e ty a= .  Differentiating this twice gives 
 

2
2 2

2
d d2 e , 4 ed d

t ty ya at t
= = . 

 

Substituting the above expressions for 
2

2
d
d

y
t

and y into the complete differential equation 

for y in terms of t gives 
 

2 2 24 e e 5e .t t ta a+ =  
 
It follows that 1a =  and the PI is therefore 2e ty = .  The general solution for y is 
obtained by adding the CF and PI giving  
 

2cos sin e ty A t B t= + + . 

(b) 
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Before the given boundary conditions can be applied, y and d
d
y
x  must be expressed in 

terms of x.  Since e , ln .tx t x= =   Hence 
 

( ) ( )
( ) ( )

2cos ln sin ln .
d - sin ln cos ln 2 .d

y A x B x x
y A Bx x xx x x

= + +

= + +
 

 
Applying the condition 3y =  when 1x =  gives 
 

3 cos0 sin 0 1 1;A B A= + + = +  
 

and applying the condition d 3d
y
x = when 1x = gives 

 
3 sin 0 cos0 2 2 .A B B= − + + = +  

 
Hence 2A =  and 1B = .  The required solution is therefore 
 

( ) ( ) 22cos ln sin ln .y x x x= + +  

(c) 

Also 
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Exercise 5F 

1. The function ( )y x  satisfies the differential equation 
 

2

2

d 1 d 0 ,
d 2 d

y y
x x x
− =

−
 

 
 where 2.x >  
 

 (a) Show that the substitution d
d
y u
x
=  reduces the differential equation to 

 
d 0.d 2
u u
x x− =

−
 

 
 (b) Find the general solution for ( ).u x  
 
 (c) Hence find the general solution for ( ).y x  
 
 
2. The function ( )y x  satisfies the differential equation  
 

( ) ( )
2

2
d dsin 2 cos 0 , 0 π .dd

y yx x xxx
− = < <  

 

 (a) Use the substitution d
d
y ux =  to transform the differential equation to one of first order in 

.u   Find the general solution for u and show that it can be expressed as 
 

( )1 cos 2u C x= −  
 

  where C is an arbitrary constant. 
 

 (b) Given that πy =  and d 1d
y
x =  when π

2x = , find ( )y x . 
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3. (a) Use the substitution d
d
y ux =  to transform the differential equation  

 
2

3
2

d d2 edd
xy y

xx
− =  

 
  into a first order linear differential equation in .u  
 
 (b) Obtain an integrating factor for the differential equation in u, and hence show that the 

general solution is 
 

3 2e e ,x xu A= +  
 
  where A is an arbitrary constant. 
 

 (c) Given that 0y =  and d 0d
y
x =  when 0x = , find y in terms of x. 

 
 
4. The function ( )y x  satisfies the differential equation 
 

( )
2

2
2

d dcot 2sin ,dd
y yx xxx
− =  

 
 where 0 π.x< <  
 

 (a) Use the substitution d
d
y ux =  to transform the differential equation into a first order linear 

differential equation in u. 
 

 (b) (i) Obtain an integrating factor of the differential equation in u. 

 

  (ii) Hence show that the general solution is 

 

2sin cos sin ,u x x A x= − +  
 
  where A is an arbitrary constant. 
 
 (c) Obtain the general solution for ( ).y x  
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5. (a) Show that the substitution 1x t=  transforms the differential equation 

 
2

4 3
2

d d 12 dd
y yx x yx xx
+ − =  

2

2
d .
dt

y y t− =  

 
 (b) (i) Find the general solution for y in terms of t. 
 
  (ii) Hence find the general solution for y in terms of x. 
 
 
6 (a) Show that the substitution y ux= transforms the differential equation 
 

( ) ( )
2

2 2
2

d d2 2 1 5 4 2 0dd
y yx x x x x yxx
+ − + − + =  

2

2
d d4 5 0 .dd

u u uxx
+ + =  

 
 (b) Find the general solution for u. 
 
 (c) Show that 0y →  as x →∞ . 

into 

into 
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Miscellaneous exercises 5 
 
1. The function ( )y x  satisfies the differential equation 
 

2

2
d d3 4 6e .dd

xy y yxx
− − =  

 
 (a) Find the complementary function. 

 (b) Find a particular integral. 

 (c) Hence find the solution for ( )y x  which is such that 0y =  and d 3d
y
x =  when 0.x =  

 
 
2. Solve the differential equation 
 

2

2
d d4 5 0dd

y y yxx
− + =  

 

 subject to the conditions that 0y =  and d 0d
y
x =  when 0.x =  

 
 
3. Find the general solution of the differential equation 
 

2

2
d d2 10 3e .dd

xy y yxx
−+ + =  

 
 
4. Solve the differential equation 
 

2
2

2
d d2 2e ,dd

xy y
xx

−+ =  

 

 given that 0y =  when 0x =  and that 2y →  as .x →∞  
[JMB, 1989] 

 
 
5. (a) Show that the differential equation 
 

2

2
d 4 12cos 2
d

y y x
x

+ =  

 

  has a particular integral of the form sin 2 ,Cx x  where C is a constant. 
 

 (b) Solve the differential equation given that 1y =  and d 2d
y
x =  when 0.x =  

[NEAB, 1995] 
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6. The function ( )y x  satisfies the differential equation 
 

2
2

2
d 4 4 .
d

y y x
x

− =  

 
 (a) Find a particular integral. 

 (b) Find the general solution for ( ).y x  
 
 
7. The function ( )y x  satisfies the differential equation 
 

( )
2

2
d d1 0 ,dd

y yx x xx
+ − =  

 
 where 0x > . 
 

 (a) Use the substitution d
d
y ux =  to transform the differential equation to one of first order in 

u.  Obtain the general solution of this differential equation and show that it can be 
expressed as 

 
e ,xu Ax −=  

 
  where A is an arbitrary constant. 
 
 (b) (i) Find the general solution for ( )y x . 
 
  (ii) Obtain the particular solution for ( )y x which satisfies the conditions ( )0 0y =  and 

( ) 1y x →  as .x →∞  
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8. The function ( )y x satisfies the differential equation 
 

2

2
d d1 1,dd

y y
x xx

− =  

 
 where 0 .x >  
 

 (a) Use the substitution d
d
y ux =  to transform the differential equation to one of first order in 

u.  Find the general solution for u. 
 
 (b) Deduce that the general solution for ( )y x  is 
 

( ) 2 2 21 1 1ln ,2 4 2y x x x x Ax B= − + +  

 
  where A and B are arbitrary constants. 
 
 (c) Find the solution for ( )y x  which is such that ( )1 0y =  and ( ) 1y x →  as 0 .x →  
 
 
9. (a) Show that the substitution 2x t=  transforms the differential equation 
 

( )
2

2
d d4 2 1 2 3dd

y yx x y xxx
+ − + =  

2

2
d d2 3 .dd

y y y ttt
− + =  

 
 (b) Find the general solution for y in terms of x. 

into 
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Answers to Exercises � Further Pure 3 
Chapter 1 
 
 
 
1.  (a)  1       (b)  3−      (c)  0+     (d)  0−  
 
2.  ln x →−∞  as x 0→  and limits must be finite. 
 
3.  (a)  π4      (b)  0 

 
4.  (a)  2

3      (b)  1
2       (c)  1

2−    (d)  0 

 
 
 

1.  
2 3

1 2 6
x xx+ + +      ;      general term = !

rx
r . 

 

2.  
2 3

1 2 6
x xx− + −  

 

3.  ( ) ( )
2

1
2 !

rr x
r

−   ,  0,1, 2,r = �. 

 

5.  
422 12

xx+ +       ;      general term ( )
22

2 !
rx

r
=  , 0,1,2,r = � . 

 
 
 
1.  0.540302 
 
2.  (a)  0.4794 
 

3.  (a) 2 44 42 3 15x x− +         (b)  2 49 271 2 8x x− +        (c)  2 3204
3 9x x x− +  

     (d)  291 3 2x x− +              (e)  2 31 2
2 3x x x+ −  

 

4.  (a)  2 31 1
2 3x x x− − −        (b)  2 313 71 5 2 6x x x− + +  

     (c)  2 351 2 3x x+ −            (d)  2 37 65
2 6x x x− +  

 
5.  (a)   1 1x− ≤ <        (b)  all x       (c)  all x       (d)  1 1

3 3x− < <

Exercise 1A 

Exercise 1C 

Exercise 1B 
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1. (a)  1 (b)  3 (c)  1
2  (d)  2 

 

2. (b)  1
2−  

 

3. 1 24  

 

4. (a)  ( ) ( )2 211 ln 2 ln 22x x+ +  (b)  ln 2
ln 3  

 

5. 3
2  

 
 
 
1. Each of these limits is zero 
 
4. (b) 
 
 
 
 
 
 
 
 
 
5. (b) 
 
 
 
 
 
 
 
 
 
 
 
 

1. (a)  The interval of integration is infinite (b)  1
2

ln x
x

 is not defined at 0x =  

 (c)  
2

1
1 x−

 is not defined at 1x =

Exercise 1E 

Exercise 1F 

 y 

 x 

 e�1 

 1  O 

x

 y 

 1
 �e�1 

 e�1 
 O 

Exercise 1D 
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1. (a)  The first integral exists.  The second does not. (b)  1
2  

 

2. (a)  ( )1 1

0

πlim sin 1 sin 2a
a− −

→
− =  (b)  ( )1lim 1 11a a→∞

− + =
+

 

 (c)  ( )lim e e 1 1a a

a
a − −

→∞
− − + =  (d)  

( )
1
2

2lim 1 1
4a a→−∞

⎛ ⎞
⎜ ⎟− =
⎜ ⎟−⎝ ⎠

 

 (e)  ( )3 3

0

1 1 1 1lim ln3 9 9 9a
a a a

→
− − + = −  (f)  ( )

0
lim ln 0
a

a a a
→

− + =  

 
3. (a)   (i)  The interval of integration is infinite 

       (ii)  21
x
x−

 is not defined at 1x =

Exercise 1G 
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4.  (a) 2 31
3x x x+ −         (b) 1− < x 1

2≤  

5.  (a) 391 2 x−                 (b) 1 1
3 3x− < ≤  

6. (a)(i)  2 3 41
2x x x+ +   (ii)  2 421 2 3x x− +    (b)  1

2−  

 
7. 2−  
 
8. (a)  0 (b)  �1 
 
10. (a)  ln 1a a a− −  

 (b)  The integral is improper because ln x  is not defined at 0.x =  
       The integral exists because ( )ln 1 1 as 0.a a a a− − → − →  

11. (a)  2 41 11 2 6x x− +  (b)  1 e2  

12  (a)  1
2     (b) 3 ;2  the integral is improper because the interval of integration is infinite 

13. (a)  21 2 4x x+ +  (b)  2 3142 2 3x x x+ +  (c)  1 

14. ( )
1 21 1ln d ln  as 0.2a

I x x a ax= = − → −∞ →∫  Hence I does not exist. 

 ( )1 1
2 2

1

0 0

1lim ln d lim 2 ln 4 4 4
a aa

J x x a a a
x→ →

= = − − + = −∫  

 
15. (b) (c)(ii)  Area = 2 
 
 
 
 
 
 
 
 
 
 
 
 

16. (a)(i)  21 31 2 8x x+ +  (b)  �1 (c)(i) 1p =    (ii)  1 
 

17. (a)(i)  3 5 2 34 4 1 12 ;3 15 2 6x x x x x x− + − +  
  

  (b)(ii)  1 1 1
2 12 xx + +     (iii) 1

2−

 y 

 x 

 4e�2 

 2  O 

Miscellaneous exercises 1 
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Chapter 2 
 
 
 
1.  
 
 
 
 
 
 
 
 

2. (a)  2π
3  (b)  19  

 
3. (a) (b) 
 
 
 
 
 
 
 
 
 
 
 

1. (b)  ( )3 3 3, , 2, 2 32 2A B⎛ ⎞
−⎜ ⎟

⎝ ⎠
 

 

2. (a)  ( )π2 2, 4  (b)  ( )2π2, 3  (c)  5, 4.07r θ= ≈  

 
 
3.  2 
 
 
 
1. 2 sin , 0 πr a θ θ= ≤ ≤  
 

2. π π2 cos , 2 2r a θ θ= − ≤ ≤  

 

3. π πsec , 2 2r a θ θ= − < <  

Exercise 2A 

O
2

 5
4
π  

A 

L 

 π3
4−

C, D 

3 

B 

1  π5  

L O 1 2 L O π
3

π
2  

Exercise 2B 

Exercise 2C 
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1. (a) A rough sketch should show a curve in the form of a spiral around the pole O. 

It should start at the point (1, 0), pass through the point (3, 0) and end at the point (5, 0). 
 
 (b)  

θ 0 π
2

 π  3π
2

 2π  5π
2

 3π  7π
2

 4π  

r 1 1.5 2 2.5 3 3.5 4 4.5 5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. (a) (b) 

θ 0 π
6

 π
3

 π
2

 2π
3

 5π
6

 π  

r 3 2.87 2.5 2 1.5 1.13 1 

 
 
 
 
 
 
 
 

3. (a) (b)  π
2θ =  

 
 
 
 
 
 
 
 

Exercise 2D 

L O 1 5 3 

L O 3 

L O 1 
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4. (b)  
 
 
 
 
 
 
 
 
 
 
 
5. (a) (b)  π 2π 4π 5π0, , , π, ,3 3 3 3θ =  

 
 
 
 
 
 
 
 
 
 
 
6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. It is wrong because r is negative in two parts of the interval π π.θ− < ≤  
 
2. (a)  r a=  
 

L O 

L O

L O 1 
4.8 

Exercise 2E 
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1. (a) (b)  31 π6  

 
 
 
 
 
 

2. (a) (b)  
π
2e 1−  

 
 
 
 
 
 

3.  9π
2  

 

4.  
2π

8
a  

 

5. (a) (b)  ( ) ( )1 π 1 5π, , ,2 6 2 6  

  (c)  2π 7 3
3 8−  

 
 
 
 
 
 
 

L O

Exercise 2F 

L O 

L O 1 

1
2

1 
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1. Area 1 ln 22=  

 
2. (a) 
 
 
 
 
 
 
 
 
 

3. (a)  tan 2 cos , tan 2 sinx yθ θ θ θ= =  (b)(i)  3 3
8  

 

4. (b)(ii)  2
1 cosr θ=
+

 

 
 
5. (a) and (b)(iii) 
 
 
 
 
 
 
 
 
 
 
 

6. (b)(i)  There is no curve when π π2 θ< <  and π 02 θ− < <  

            because in these intervals sin 2 0.θ <  
 

    (ii)  ( ) ( )π 3π, , ,4 4a a −  (iii) 

 
 

 (c)  22a  (d)  π6  
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Chapter 3 
 
 
 
1. (a)  1 (b)  2 (c)  1 (d)  1 
 
2. Equations (a), (b) and (c) are linear. 
 
 
 
 

2. (a)  21
2

1y
x C

=
+

 (b)  2
2

1
y

x
=

+
 

 

3. (a)  1y Cx= − +  (b)  11y x= −  (c)   

 
 
4. (a)  3e xy −=  
 

5. (a)  250
5x Ct= − +
+

 (b)(i)  ( )0 0x =     (ii)  50
5

tx t=
+

 

 
 
 

1. (a)  2x  (b)  2
2

Cy x
x

= +  

 

2. (a)  2 21 e e4
x xy C −= +  (b)  ( )2 21 e e4

x xy −= −  

 
3. ln xy x=  

 
4. ( )2y x x C= +  
 
5. (b)(i)  1 cot cosecy x x C x= − +    (ii) 1 cot cosecy x x x= − −  
 
6. tan secy x x= +  
 

7. (a)  21 e2
xy x Cx−= − +  (b)  21 e2

xy x −= −  

 
8. 1 e xy x −= + +
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1. (a)  23 2 1x x− +  (b)  1x− +  (c)  ( )1 sin cos2 x x+  (d)  4 2sin cos5 5x x−  

 (e)  31 e2
x  (f)  33 e xx  (g)   12 1 e2

xx −− +  

 

2. (a)  3
C Pe , 2xy C y= = −  (b)  ( )( )3 12 e 1xy −= −  

 
3. (a)  2 2

C Pe , ex xy C y x= =  (b)  ( ) 22 e xy x= +  
 

4. ( )1 7e 2cos 2 sin 25
xy x x−= − +  

 
 

1. (b)  
2

2,x C xu yx x C
+= =

+
 

 
2. (b)  ( )lnu x C= − +  (c)  ( )ln 1y x x= − +  (d)  1x > −  
 

3. (b)  2
x Cu

x
+=  (c)  lny x=  

 

 
 
1. (b)  ( )23 cosy x x= +  
 

2. (a)(i)  e xA −    (ii)  ( )1 sin cos2 x x−  (b)  ( )3 1e sin cos2 2
xy x x−= + −  

 

3. (a)  e ex xy C x− −= +  (b)(i)  ( )1 e xy x −= −     (ii)  0y =  (because as , 0)x y→∞ →  
 

4. (b)  ( ) ( ) ( )21 1 ln 1y x x x= − + − −  
 

5. (a)  4, 6, 6, 3a b c d= = = = −  (b)  2e xC −  (c)  2 3 23e 4 6 6 3xy x x x−= + − + −  
 
6. (b)  2 lny x x x= − −  

 (c)  when 0, ln 0x x x→ →  and therefore 0.y →  The curve will therefore approach the 
   point ( )0,0 ,  i.e. the origin. 
 

7. (b)  1 lnu x Cx= + +  (c)  1
1 lny x x=
+ +

 

8. (b)  

( )
1

6 3

xy
x C

=
+

Exercise 3D 
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Chapter 4 
 
 
 
(a)  0 0 1 21, 2, 0.1, 1.1, 1.2x y h x x= = = = =  (b)  ( ) ( )1.1 , 2.0y y  (c)  ( )0 0f , 9x y =  
 
 
 
1. 1.069,  1.147,  1.232,  1.325,  1.425 
 
2. ( )1 2.230y =  
 
3. (a)  0.0125h =  (c)  3 0.160y =  
 
 
 
1. (a)  1.2,  1.5059 (b)  1.6118 
 
2. (b)  ( )2 1.204y =  
 
3. (b) ( )0.5 0.539.y =    (The intermediate values are 1 0.1,y =  2 0.20199,y =  3 0.30792y =       

and 4 0.41969)y =  
 
 
 
1. (a)  ( )3 2.305y =  (The intermediate values are *

1 1.7329,y =  1 1.20799;y =  *
2 1.45796,y =  

2 1.49464;y =  *
3 1.82418,y =  3 1.86100;y =  *

4 2.26918)y =  
 
 (b) ( )3 2.305.y =   (The values of k1 and k2 in the working are as follows: 
  first step: 1 20.17329, 0.24269k k= =  
  second step: 1 20.24997, 0.32333k k= =  
  third step: 1 20.32954, 0.40318k k= =  
  fourth step: 1 20.40818, 0.47951)k k= =  
 
2. ( )0.4 0.458.y =   (The value of y1 is 0.20833) 
 
3. (a)  ( )1.1 1.01732y =  (b)  1.02216 (c)  1.02238 
 

Exercise 4A 
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1. (a)  ( )1.4 0.867y =  (b)  0.903 (c)  0.933 (d)  0.934 
 
 (f)   � 8.0%,  � 4.1%,  � 1.0%,  � 0.8% 
 
 (g)  The advantage of reducing the step length is shown in parts (a) and (b). The error has 
        been halved. 
  Parts (c) and (d) show that the mid-point formula and the improved Euler method give 

better accuracy than the Euler method with the same step length (0.2).  This is because 
the truncation error in Euler�s formula is greater than in the formulae for the other two 
methods. 

 
3. (a) ( )1.4 0.9y =  
 
 
 
1. (b) ( )1.3 0.899y =  
 
2. (b)(ii)  2, 1a b= =  
 

3. (a)(ii)  
1

2
sin
1

xy
x

−
=

−
 (b)  0.60748 (c)  0.48% (approximately) 

 
4. (a)  ( ) 2e tC t t −=    (The differential equation is of first order linear form and is solved using 

the methods given in Chapter 3) 
 
 (b)(i)  ( )0.1 0.1C =  (ii) ( ) ( )0.2 0.158, 0.3 0.229C C≈ ≈  
 
5. (a)  1.435794 (b)  1.217897 (c)(i)  ( ) exy x =  (ii)  � 11.5%,  � 2.2% 
 
6. (b)  2.784 (c)  Reduce the step length in both parts (a) and (b). 
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Chapter 5 
 

 
 
1. (a)  1 4i+  (b)  7 (c)  5 5i−  
 (d)  5 2i− −   (e)  11 10i+  (f)  50i−  
 
3. (a)  �1, 7 (b)  �1, 1 
 
4. 3 2ix = ±  
 

5. (a)  1 3 1 3i   and  i2 2 2 2− + − −  

 
 
 
2. 4e cos 2 , 2e sin 2x xx x−  
 
3. (a)  ( ), iC A B D A B= + = −  (b)  2 , 2C Dα β= = −  
 
 
 
 

2. (a)  ( ) ( )d e cos sin e cos sin ,d
x xy A x x B x xx = − + +  

      
2

2
d 2 e sin 2 e cos
d

x xy A x B x
x

= − +  

 

3. 
2

2
d d4 4 4dd

y y yxx
− + =  
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1. (a)  cos3 sin 3y A x B x= +  (b)  cos3 2sin 3y x x= −  

2. (a)  3 2e ex xy A B −= +  (b)  ( ) 3e
x

y Ax B= +  

 (c)  ( )3e cos sinxy A x B x= +  (d)  ( )
3
2e
x

y Ax B
−

= +  

 (e)  ( )3
2e cos sin2 2

x x xy A B
−

= +  (f)  6e xy A B= +  

3. (a)  2 2e e
x x

y A B
−

= +  (b) 2 2e e
x x

y
−

= +  
 
4. ( ) 21 e xy x= −  

5. 1 e sin 22
xy x=  

 
 
 

1. (a)  ( ) 21 1PI: e ; GS: e e9 9
x x xy y A Bx− −= = + +  

 (b)  ( )2 2 2PI: 2 3; GS: e 2 3xy x x y A Bx x x= + + = + + + +  

 (c)  ( ) 2PI: 4cos 3sin ; GS: e 4cos 3sinxy x x y A Bx x x= + = + + +  
 

2. (a)  ( ) 3e xy A Bx= +  (b) 1
2a =  (c)  ( ) 3 2 31e e2

x xy A Bx x= + +  

 
3. 4 34 24 24y x x x= − + −  
 
4. ( )2 e 1xy −= −  

 
5.  ( )2e sin cos sin cosxy x x x x= − + +  
 

6. (a)  cos 4 sin 4y A x B x= +  (b)  2a = −  (c)  3 sin 4 2 cos 44y x x x= −  
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1. (b)  ( ) ( 2)u x A x= −      (c) 21( ) ( 2 )2y x A x x B= − +  

 

2. (a)  d(sin ) (2cos ) 0,d
ux x ux − =    GS is 2sinu A x=  

 (b)  31 1( ) ( sin 2 )2 2 4y x x x= − + π 

 

3. (a)  3d 2 ed
xu ux − =  (b)(i)  2e x−  (c)  3 21 1 1( ) e e3 2 6

x xy x = − +  

 

4. (a)  2d (cot ) 2sind
u x u xx − =  (b)(i)  1

sin x   (c) 2y( ) sin cosx x A x B= − − +  

 

5. (b)(i)  e et ty A B t−= + −  (ii)  
1 1

1e ex xy A B x
−

= + −  

 

6. (b)  2e ( cos sin )xu A x B x−= +  

 (c)  The GS is 2e ( cos sin )xy x A x B x−= + . For all x, cos sinA x B x+  is finite. 

        As ,x →∞  2e 0xx − → . Hence 0y → as x →∞ .           
 

Exercise 5F 



klmGCE Further Mathematics (6370)                        Further Pure 3 (MFP3) Textbook  
 

 
149 

 

 
 
 
1. (a)  4

C e ex xy A B −= +  (b)  P exy = −  (c)  4e ex xy = −  
 
2. ( )2e cos 2sinxy x x= −  
 

3. ( ) 1e cos3 sin 3 e3
x xy A x B x− −= + +  

 
4. 2 22 2e ex xy x− −= − −  
 
5. (a)  3C =  (b)  cos 2 sin 2 3 sin 2y x x x x= + +  
 

6. (a)  2
P

1
2y x= − −  (b)  2 2 2 1e e 2

x xy A B x−= + − −  

 

7. (b)(i)  ( ) ( 1)e xy x A x B−= + +  (ii)  ( ) 1 ( 1)e xy x x −= − +  
 

8. (a)  d 1 1d
u ux x− = ,  lnu x x Ax= +  (c)  2 21( ) ln 12y x x x x= − +  

 

9. (b)  ( ) e 3 6xy A B x x= + + +  
 

Miscellaneous exercise 5 
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