FP3 Groups #### **1.** June 2010 qu.2 A multiplicative group with identity e contains distinct elements a and r, with the properties $r^6 = e$ and $ar = r^5a$. (i) Prove that $$rar = a$$. [2] (ii) Prove, by induction or otherwise, that $r^n a r^n = a$ for all positive integers n. [4] ### **2.** June 2010 qu.8 A set of matrices M is defined by $$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ B = \begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix}, \ C = \begin{pmatrix} \omega^2 & 0 \\ 0 & \omega \end{pmatrix}, \ D = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ E = \begin{pmatrix} 0 & \omega^2 \\ \omega & 0 \end{pmatrix}, \ F = \begin{pmatrix} 0 & \omega \\ \omega^2 & 0 \end{pmatrix},$$ where ω and ω^2 are the complex cube roots of 1. It is given that M is a group under matrix multiplication. (ii) Explain why there is no element $$X$$ of the group, other than A , which satisfies the equation $X^5 = A$. (iii) By finding $$BE$$ and EB , verify the closure property for the pair of elements B and E . [4] (iv) Find the inverses of $$B$$ and E . [3] (v) Determine whether the group M is isomorphic to the group N which is defined as the set of numbers $\{1, 2, 4, 8, 7, 5\}$ under multiplication modulo 9. Justify your answer clearly. [3] ### 3. <u>Jan 2010 qu. 2</u> H denotes the set of numbers of the form $a+b\sqrt{5}$, where a and b are rational. The numbers are combined under multiplication. (i) Show that the product of any two members of $$H$$ is a member of H . [2] It is now given that, for a and b not both zero, H forms a group under multiplication. (iii) Find the inverse of $$a + b\sqrt{5}$$. [2] ### **4.** Jan 2010 qu. 8 The function f is defined by $f: x \mapsto \frac{1}{2-2x}$ for $x \in \mathbb{R}$, $x \neq 0$, $x \neq \frac{1}{2}$, $x \neq 1$. The function g is defined by g(x) = ff(x). (i) Show that $$g(x) = \frac{1-x}{1-2x}$$ and that $gg(x) = x$. [4] It is given that f and g are elements of a group K under the operation of composition of functions. The element e is the identity, where $e: x \mapsto x$ for $x \in \mathbb{R}, x \neq 0, x \neq \frac{1}{2}, x \neq 1$. - (ii) State the orders of the elements f and g. [2] - (iii) The inverse of the element f is denoted by h. Find h(x). [2] - (iv) Construct the operation table for the elements e, f, g, h of the group K. [4] ### 5. June 2009 qu.2 It is given that the set of complex numbers of the form $re^{i\theta}$ for $-\pi < \theta \le \pi$ and r > 0, under multiplication, forms a group. - (i) Write down the inverse of $5e^{\frac{1}{3}\pi i}$. [1] - (ii) Prove the closure property for the group. [2] - (iii) Z denotes the element $e^{i\gamma}$, where $\frac{1}{2}\pi < \gamma < \pi$. Express Z^2 in the form $e^{i\theta}$, where $-\pi < \theta < 0$. [2] ### **6.** June 2009 qu.8 A multiplicative group Q of order 8 has elements $\{e, p, p^2, p^3, a, ap, ap^2, ap^3\}$, where e is the identity. The elements have the properties $p^4 = e$ and $a^2 = p^2 = (ap)^2$. - (i) Prove that a = pap and that p = apa. [2] - (ii) Find the order of each of the elements p^2 , a, ap, ap^2 . [5] - (iii) Prove that $\{e, a, p^2, ap^2\}$ is a subgroup of Q. [4] - (iv) Determine whether *Q* is a commutative group. [4] #### **7.** Jan 2009 qu. 1 In this question *G* is a group of order *n*, where $3 \le n < 8$. - (i) In each case, write down the smallest possible value of n: - (a) if G is cyclic, [1] - (b) if G has a proper subgroup of order 3, [1] - (c) if G has at least two elements of order 2. [1] - (ii) Another group has the same order as *G*, but is not isomorphic to *G*. Write down the possible value(s) of *n*. [2] ### **8.** Jan 2009 qu. 7 - (i) The operation * is defined by x * y = x + y a, where x and y are real numbers and a is a real constant. - (a) Prove that the set of real numbers, together with the operation *, forms a group. [6] - (b) State, with a reason, whether the group is commutative. [1] - (c) Prove that there are no elements of order 2. [2] - (ii) The operation \circ is defined by $x \circ y = x + y 5$, where x and y are **positive** real numbers. By giving a numerical example in each case, show that two of the basic group properties are not necessarily satisfied. [4] ### **9.** June 2008 qu.1 - (a) A cyclic multiplicative group G has order 12. The identity element of G is e and another element is r, with order 12. - (i) Write down, in terms of *e* and *r*, the elements of the subgroup of *G* which is of order 4. [2] - (ii) Explain briefly why there is no proper subgroup of G in which two of the elements are e and r. - (b) A group H has order mnp, where m, n and p are prime. State the possible orders of proper subgroups of H. [2] ### **10.** June 2008 qu.6 The operation \circ on real numbers is defined by $a \circ b = a|b|$. - (i) Show that \circ is not commutative. [2] - (ii) Prove that \circ is associative. [4] - (iii) Determine whether the set of real numbers, under the operation ○, forms a group. [4] #### **11.** Jan 2008 qu. 1 (a) A group G of order 6 has the combination table shown below. | | e | a | b | p | q | T | |---|-------------|---|---|---|---|---| | e | e | a | b | p | q | r | | a | a | b | e | r | p | 9 | | b | b | e | a | 9 | r | p | | p | p | q | r | e | a | b | | q | e a b p q r | 1 | p | b | e | a | | r | r | p | q | a | b | e | - (i) State, with a reason, whether or not G is commutative. [1] - (ii) State the number of subgroups of G which are of order 2. [1] - (iii) List the elements of the subgroup of G which is of order 3. [1] - (b) A multiplicative group H of order 6 has elements e, c, c^2 , c^3 , c^4 , c^5 , where e is the identity. Write down the order of each of the elements c^3 , c^4 and c^5 . [3] ### **12.** Jan 2008 qu. 8 Groups A, B, C and D are defined as follows: - A: the set of numbers {2, 4, 6, 8} under multiplication modulo 10, - B: the set of numbers {1, 5, 7, 11} under multiplication modulo 12, - C: the set of numbers $\{2^0, 2^1, 2^2, 2^3\}$ under multiplication modulo 15, - D: the set of numbers $\left\{ \frac{1+2m}{1+2n}, \text{ where } m \text{ and } n \text{ are integers} \right\}$ under multiplication. - (i) Write down the identity element for each of groups A, B, C and D. - (ii) Determine in each case whether the groups A and B, B and C, A and C are isomorphic or non-isomorphic. Give sufficient reasons for your answers. [5] [4] [2] [2] [2] - (iii) Prove the closure property for group D. - (iv) Elements of the set $\left\{ \frac{1+2m}{1+2n} \right\}$, where *m* and *n* are integers are combined under **addition**. State which of the four basic group properties are **not** satisfied. (Justification is not required.) #### **13.** June 2007 qu.4 Elements of the set $\{p, q, r, s, t\}$ are combined according to the operation table shown below. | | p | q | r | S | t | |---|--------|---|---|---|---| | p | t | S | p | r | q | | q | S | p | q | t | r | | r | p
r | q | r | S | t | | S | r | t | S | q | p | | t | q | r | t | p | S | - (i) Verify that q(st) = (qs)t. - (ii) Assuming that the associative property holds for all elements, prove that the set $\{p, q, r, s, t\}$, with the operation table shown, forms a group G. [4] - (iii) A multiplicative group H is isomorphic to the group G. The identity element of H is e and another element is d. Write down the elements of H in terms of e and d. [2] ### **14.** June 2007 qu.9 The set S consists of the numbers 3^n , where $n \in \mathbb{Z}$. (\mathbb{Z} denotes the set of integers $\{0, \pm 1, \pm 2, \dots \}$.) - (i) Prove that the elements of S, under multiplication, form a commutative group G. (You may assume that **addition** of integers is associative and commutative.) [6] - (ii) Determine whether or not each of the following subsets of S, under multiplication, forms a subgroup of G, justifying your answers. (a) The numbers $$3^{2n}$$, where $n \in \mathbb{Z}$ [2] (b) The numbers $$3^n$$, where $n \in \mathbb{Z}$ and $n \ge 0$. [2] (c) The numbers $$3^{(\pm n^2)}$$, where $n \in \mathbb{Z}$ [2] ### **15.** Jan 2007 qu. 1 - (i) Show that the set of numbers {3, 5, 7}, under multiplication modulo 8, does not form a group. [2] - (ii) The set of numbers $\{3, 5, 7, a\}$, under multiplication modulo 8, forms a group. Write down the value of a. [1] - (iii) State, justifying your answer, whether or not the group in part (ii) is isomorphic to the multiplicative group $\{e, r, r^2, r^3\}$, where e is the identity and $r^4 = e$. [2] ### **16.** Jan 2007 qu. 5 A multiplicative group G of order 9 has distinct elements p and q, both of which have order 3. The group is commutative, the identity element is e, and it is given that $q \neq p^2$. - (i) Write down the elements of a proper sub group of G - (a) which does not contain q, [1] - (b) which does not contain p. [1] - (ii) Find the order of each of the elements pq and pq^2 , justifying your answers. [3] - (iii) State the possible order (s) of proper subgroups of G. [1] - (iv) Find two proper subgroups of G which are distinct from those in part (i), simplifying the elements. [4] # **17.** June 2006 qu.1 - (a) For the infinite group of non-zero complex numbers under multiplication, state the identity element and the inverse of 1 + 2i, giving your answers in the form a + ib. [3] - (b) For the group of matrices of the form $\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$ under matrix addition, where $a \in \mathbb{R}$, state the identity element and the inverse of $\begin{pmatrix} 3 & 0 \\ 0 & 0 \end{pmatrix}$. [2] ### **18.** June 2006 qu.8 A group D of order 10 is generated by the elements a and r, with the properties $a^2 = e$, $r^5 = e$ and $r^4a = ar$, where e is the identity. Part of the operation table is shown below. | | e | а | r | r^2 | | r^4 | ar | ar^2 | ar^3 | ar^4 | |--------|--------|----|--------|--------|--------|--------|------------------|--------|---------------|--------| | е | е | а | r | r^2 | r^3 | r^4 | ar | ar^2 | ar^3 | ar^4 | | а | а | e | ar | ar^2 | ar^3 | ar^4 | i
!
!
! | | | | | r | r | | r^2 | r^3 | r^4 | е | | | | | | r^2 | r^2 | | r^3 | r^4 | e | r | !
!
! | | | | | r^3 | r^3 | | r^4 | e | r | r^2 | !
!
! | | | | | r^4 | r^4 | ar | е | r | r^2 | r^3 | !
!
! | | | | | ar | ar | | ar^2 | ar^3 | ar^4 | а | | | | | | ar^2 | ar^2 | | ar^3 | ar^4 | a | ar | i
!
! | T | $\overline{}$ | | | ar^3 | ar^3 | | ar^4 | a | ar | ar^2 |
 | | ٦, | | | ar^4 | ar^4 | | а | ar | ar^2 | ar^3 | !
!
! | | | | - (i) Give a reason why D is not commutative. - (ii) Write down the orders of any possible proper subgroups of *D*. [2] [1] [6] [3] - (iii) List the elements of a proper subgroup which contains (a) the element a, [1] (b) the element r. [1] - (iv) Determine the order of each of the elements r^3 , ar and ar^2 . [4] - (v) Copy and complete the section of the table marked **E**, showing the products of the elements ar, ar^2 , ar^3 and ar^4 . [5] ### **19.** Jan 2006 qu. 2 The tables shown below are the operation tables for two isomorphic groups G and H. | G | а | b | С | d | | Н | 2 | 4 | 6 | 8 | |---|---|--------|---|---|---|---|---|---|---|---| | а | d | b
a | b | С | • | 2 | 4 | 8 | 2 | 6 | | b | а | b | С | d | | 4 | 8 | 6 | 4 | 2 | | С | b | c | d | a | | 6 | 2 | 4 | 6 | 8 | | d | С | d | а | b | | 8 | 6 | 2 | 8 | 4 | - (i) For each group, state the identity element and list the elements of any proper subgroups.m [4] - (ii) Establish the isomorphism between G and H by showing which elements correspond. [3] ## **20.** Jan 2006 qu. 7 A group G has an element a with order n, so that $a^n = e$, where e is the identity. It is given that x is any element of G distinct from a and e. - (i) Prove that the order of $x^{-1}ax$ is n, making it clear which group property is used at each stage of your proof. - (ii) Express the inverse of $x^{-1}ax$ in terms of some or all of x, x^{-1} , a and a^{-1} , showing sufficient working to justify your answer. - (iii) It is now given that a commutes with every element of G. Prove that a^{-1} also commutes with every element. [2]