FP3 Groups

1. June 2010 qu.2

A multiplicative group with identity e contains distinct elements a and r, with the properties $r^6 = e$ and $ar = r^5a$.

(i) Prove that
$$rar = a$$
. [2]

(ii) Prove, by induction or otherwise, that $r^n a r^n = a$ for all positive integers n. [4]

2. June 2010 qu.8

A set of matrices M is defined by

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ B = \begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix}, \ C = \begin{pmatrix} \omega^2 & 0 \\ 0 & \omega \end{pmatrix}, \ D = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ E = \begin{pmatrix} 0 & \omega^2 \\ \omega & 0 \end{pmatrix}, \ F = \begin{pmatrix} 0 & \omega \\ \omega^2 & 0 \end{pmatrix},$$

where ω and ω^2 are the complex cube roots of 1. It is given that M is a group under matrix multiplication.

(ii) Explain why there is no element
$$X$$
 of the group, other than A , which satisfies the equation $X^5 = A$.

(iii) By finding
$$BE$$
 and EB , verify the closure property for the pair of elements B and E . [4]

(iv) Find the inverses of
$$B$$
 and E . [3]

(v) Determine whether the group M is isomorphic to the group N which is defined as the set of numbers $\{1, 2, 4, 8, 7, 5\}$ under multiplication modulo 9. Justify your answer clearly. [3]

3. <u>Jan 2010 qu. 2</u>

H denotes the set of numbers of the form $a+b\sqrt{5}$, where a and b are rational. The numbers are combined under multiplication.

(i) Show that the product of any two members of
$$H$$
 is a member of H . [2]

It is now given that, for a and b not both zero, H forms a group under multiplication.

(iii) Find the inverse of
$$a + b\sqrt{5}$$
. [2]

4. Jan 2010 qu. 8

The function f is defined by $f: x \mapsto \frac{1}{2-2x}$ for $x \in \mathbb{R}$, $x \neq 0$, $x \neq \frac{1}{2}$, $x \neq 1$. The function g is defined by g(x) = ff(x).

(i) Show that
$$g(x) = \frac{1-x}{1-2x}$$
 and that $gg(x) = x$. [4]

It is given that f and g are elements of a group K under the operation of composition of functions. The element e is the identity, where $e: x \mapsto x$ for $x \in \mathbb{R}, x \neq 0, x \neq \frac{1}{2}, x \neq 1$.

- (ii) State the orders of the elements f and g. [2]
- (iii) The inverse of the element f is denoted by h. Find h(x). [2]
- (iv) Construct the operation table for the elements e, f, g, h of the group K. [4]

5. June 2009 qu.2

It is given that the set of complex numbers of the form $re^{i\theta}$ for $-\pi < \theta \le \pi$ and r > 0, under multiplication, forms a group.

- (i) Write down the inverse of $5e^{\frac{1}{3}\pi i}$. [1]
- (ii) Prove the closure property for the group. [2]
- (iii) Z denotes the element $e^{i\gamma}$, where $\frac{1}{2}\pi < \gamma < \pi$. Express Z^2 in the form $e^{i\theta}$, where $-\pi < \theta < 0$. [2]

6. June 2009 qu.8

A multiplicative group Q of order 8 has elements $\{e, p, p^2, p^3, a, ap, ap^2, ap^3\}$, where e is the identity. The elements have the properties $p^4 = e$ and $a^2 = p^2 = (ap)^2$.

- (i) Prove that a = pap and that p = apa. [2]
- (ii) Find the order of each of the elements p^2 , a, ap, ap^2 . [5]
- (iii) Prove that $\{e, a, p^2, ap^2\}$ is a subgroup of Q. [4]
- (iv) Determine whether *Q* is a commutative group. [4]

7. Jan 2009 qu. 1

In this question *G* is a group of order *n*, where $3 \le n < 8$.

- (i) In each case, write down the smallest possible value of n:
 - (a) if G is cyclic, [1]
 - (b) if G has a proper subgroup of order 3, [1]
 - (c) if G has at least two elements of order 2. [1]
- (ii) Another group has the same order as *G*, but is not isomorphic to *G*. Write down the possible value(s) of *n*. [2]

8. Jan 2009 qu. 7

- (i) The operation * is defined by x * y = x + y a, where x and y are real numbers and a is a real constant.
 - (a) Prove that the set of real numbers, together with the operation *, forms a group. [6]
 - (b) State, with a reason, whether the group is commutative. [1]
 - (c) Prove that there are no elements of order 2. [2]
- (ii) The operation \circ is defined by $x \circ y = x + y 5$, where x and y are **positive** real numbers. By giving a numerical example in each case, show that two of the basic group properties are not necessarily satisfied. [4]

9. June 2008 qu.1

- (a) A cyclic multiplicative group G has order 12. The identity element of G is e and another element is r, with order 12.
 - (i) Write down, in terms of *e* and *r*, the elements of the subgroup of *G* which is of order 4. [2]
 - (ii) Explain briefly why there is no proper subgroup of G in which two of the elements are e and r.
 - (b) A group H has order mnp, where m, n and p are prime. State the possible orders of proper subgroups of H. [2]

10. June 2008 qu.6

The operation \circ on real numbers is defined by $a \circ b = a|b|$.

- (i) Show that \circ is not commutative. [2]
- (ii) Prove that \circ is associative. [4]
- (iii) Determine whether the set of real numbers, under the operation ○, forms a group. [4]

11. Jan 2008 qu. 1

(a) A group G of order 6 has the combination table shown below.

	e	a	b	p	q	T
e	e	a	b	p	q	r
a	a	b	e	r	p	9
b	b	e	a	9	r	p
p	p	q	r	e	a	b
q	e a b p q r	1	p	b	e	a
r	r	p	q	a	b	e

- (i) State, with a reason, whether or not G is commutative. [1]
- (ii) State the number of subgroups of G which are of order 2. [1]
- (iii) List the elements of the subgroup of G which is of order 3. [1]
- (b) A multiplicative group H of order 6 has elements e, c, c^2 , c^3 , c^4 , c^5 , where e is the identity. Write down the order of each of the elements c^3 , c^4 and c^5 . [3]

12. Jan 2008 qu. 8

Groups A, B, C and D are defined as follows:

- A: the set of numbers {2, 4, 6, 8} under multiplication modulo 10,
- B: the set of numbers {1, 5, 7, 11} under multiplication modulo 12,
- C: the set of numbers $\{2^0, 2^1, 2^2, 2^3\}$ under multiplication modulo 15,
- D: the set of numbers $\left\{ \frac{1+2m}{1+2n}, \text{ where } m \text{ and } n \text{ are integers} \right\}$ under multiplication.
- (i) Write down the identity element for each of groups A, B, C and D.
- (ii) Determine in each case whether the groups

A and B,

B and C,

A and C

are isomorphic or non-isomorphic. Give sufficient reasons for your answers.

[5]

[4]

[2]

[2]

[2]

- (iii) Prove the closure property for group D.
- (iv) Elements of the set $\left\{ \frac{1+2m}{1+2n} \right\}$, where *m* and *n* are integers are combined under **addition**. State which of the four basic group properties are **not** satisfied. (Justification is not

required.)

13. June 2007 qu.4

Elements of the set $\{p, q, r, s, t\}$ are combined according to the operation table shown below.

	p	q	r	S	t
p	t	S	p	r	q
q	S	p	q	t	r
r	p r	q	r	S	t
S	r	t	S	q	p
t	q	r	t	p	S

- (i) Verify that q(st) = (qs)t.
- (ii) Assuming that the associative property holds for all elements, prove that the set $\{p, q, r, s, t\}$, with the operation table shown, forms a group G. [4]
- (iii) A multiplicative group H is isomorphic to the group G. The identity element of H is e and another element is d. Write down the elements of H in terms of e and d. [2]

14. June 2007 qu.9

The set S consists of the numbers 3^n , where $n \in \mathbb{Z}$. (\mathbb{Z} denotes the set of integers $\{0, \pm 1, \pm 2, \dots \}$.)

- (i) Prove that the elements of S, under multiplication, form a commutative group G. (You may assume that **addition** of integers is associative and commutative.) [6]
- (ii) Determine whether or not each of the following subsets of S, under multiplication, forms a subgroup of G, justifying your answers.

(a) The numbers
$$3^{2n}$$
, where $n \in \mathbb{Z}$ [2]

(b) The numbers
$$3^n$$
, where $n \in \mathbb{Z}$ and $n \ge 0$. [2]

(c) The numbers
$$3^{(\pm n^2)}$$
, where $n \in \mathbb{Z}$ [2]

15. Jan 2007 qu. 1

- (i) Show that the set of numbers {3, 5, 7}, under multiplication modulo 8, does not form a group. [2]
- (ii) The set of numbers $\{3, 5, 7, a\}$, under multiplication modulo 8, forms a group. Write down the value of a. [1]
- (iii) State, justifying your answer, whether or not the group in part (ii) is isomorphic to the multiplicative group $\{e, r, r^2, r^3\}$, where e is the identity and $r^4 = e$. [2]

16. Jan 2007 qu. 5

A multiplicative group G of order 9 has distinct elements p and q, both of which have order 3. The group is commutative, the identity element is e, and it is given that $q \neq p^2$.

- (i) Write down the elements of a proper sub group of G
 - (a) which does not contain q, [1]
 - (b) which does not contain p. [1]
- (ii) Find the order of each of the elements pq and pq^2 , justifying your answers. [3]
- (iii) State the possible order (s) of proper subgroups of G. [1]
- (iv) Find two proper subgroups of G which are distinct from those in part (i), simplifying the elements. [4]

17. June 2006 qu.1

- (a) For the infinite group of non-zero complex numbers under multiplication, state the identity element and the inverse of 1 + 2i, giving your answers in the form a + ib. [3]
- (b) For the group of matrices of the form $\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$ under matrix addition, where $a \in \mathbb{R}$, state the identity element and the inverse of $\begin{pmatrix} 3 & 0 \\ 0 & 0 \end{pmatrix}$. [2]

18. June 2006 qu.8

A group D of order 10 is generated by the elements a and r, with the properties $a^2 = e$, $r^5 = e$ and $r^4a = ar$, where e is the identity. Part of the operation table is shown below.

	e	а	r	r^2		r^4	ar	ar^2	ar^3	ar^4
е	е	а	r	r^2	r^3	r^4	ar	ar^2	ar^3	ar^4
а	а	e	ar	ar^2	ar^3	ar^4	i ! ! !			
r	r		r^2	r^3	r^4	е				
r^2	r^2		r^3	r^4	e	r	! ! !			
r^3	r^3		r^4	e	r	r^2	! ! !			
r^4	r^4	ar	е	r	r^2	r^3	! ! !			
ar	ar		ar^2	ar^3	ar^4	а				
ar^2	ar^2		ar^3	ar^4	a	ar	i ! !	T	$\overline{}$	
ar^3	ar^3		ar^4	a	ar	ar^2	 		٦,	
ar^4	ar^4		а	ar	ar^2	ar^3	! ! !			

- (i) Give a reason why D is not commutative.
- (ii) Write down the orders of any possible proper subgroups of *D*. [2]

[1]

[6]

[3]

- (iii) List the elements of a proper subgroup which contains
 (a) the element a, [1] (b) the element r. [1]
- (iv) Determine the order of each of the elements r^3 , ar and ar^2 . [4]
- (v) Copy and complete the section of the table marked **E**, showing the products of the elements ar, ar^2 , ar^3 and ar^4 . [5]

19. Jan 2006 qu. 2

The tables shown below are the operation tables for two isomorphic groups G and H.

G	а	b	С	d		Н	2	4	6	8
а	d	b a	b	С	•	2	4	8	2	6
b	а	b	С	d		4	8	6	4	2
С	b	c	d	a		6	2	4	6	8
d	С	d	а	b		8	6	2	8	4

- (i) For each group, state the identity element and list the elements of any proper subgroups.m [4]
- (ii) Establish the isomorphism between G and H by showing which elements correspond. [3]

20. Jan 2006 qu. 7

A group G has an element a with order n, so that $a^n = e$, where e is the identity. It is given that x is any element of G distinct from a and e.

- (i) Prove that the order of $x^{-1}ax$ is n, making it clear which group property is used at each stage of your proof.
- (ii) Express the inverse of $x^{-1}ax$ in terms of some or all of x, x^{-1} , a and a^{-1} , showing sufficient working to justify your answer.
- (iii) It is now given that a commutes with every element of G. Prove that a^{-1} also commutes with every element. [2]