Edexcel Maths FP3

Topic Questions from Papers

Integration

- **4.** Given that $y = \operatorname{arsinh}(\sqrt{x}), x > 0$,
 - (a) find $\frac{dy}{dx}$, giving your answer as a simplified fraction.

(3)

(b) Hence, or otherwise, find

$$\int_{\frac{1}{4}}^{4} \frac{1}{\sqrt{[x(x+1)]}} dx,$$

giving your answer in the form $\ln\left(\frac{a+b\sqrt{5}}{2}\right)$, where a and b are integers.

(6)

5.

$$I_n = \int_0^5 \frac{x^n}{\sqrt{(25 - x^2)}} \, \mathrm{d}x \,, \qquad n \geqslant 0$$

(a) Find an expression for $\int \frac{x}{\sqrt{(25-x^2)}} dx$, $0 \le x \le 5$.

(2)

(b) Using your answer to part (a), or otherwise, show that

$$I_n = \frac{25(n-1)}{n} I_{n-2} \qquad n \geqslant 2$$

(5)

(c) Find I_4 in the form $k\pi$, where k is a fraction.

(4)

stion 5 continued		
		_
		_
		_
		_
		_
		_

8. A curve, which is part of an ellipse, has parametric equations

$$x = 3\cos\theta$$
, $y = 5\sin\theta$, $0 \le \theta \le \frac{\pi}{2}$.

The curve is rotated through 2π radians about the *x*-axis.

(a) Show that the area of the surface generated is given by the integral

$$k\pi \int_0^\alpha \sqrt{(16c^2+9)} \, dc$$
, where $c = \cos \theta$,

and where k and α are constants to be found.

(6)

(b) Using the substitution $c = \frac{3}{4} \sinh u$, or otherwise, evaluate the integral, showing all of your working and giving the final answer to 3 significant figures.

(5)

Question 8 continued		blank
		Q8
	(Total 11 marks)	
	TOTAL FOR PAPER: 75 MARKS	
	END	

Use calculus to find the exact value of $\int_{-2}^{1} \frac{1}{x^2 + 4x + 13} dx$.	(5)

- **4.** $I_n = \int_0^a (a-x)^n \cos x \, dx, \quad a > 0, \quad n \ge 0$
 - (a) Show that, for $n \ge 2$,

$$I_n = na^{n-1} - n(n-1)I_{n-2}$$

(5)

(b) Hence evaluate $\int_{0}^{\frac{\pi}{2}} \left(\frac{\pi}{2} - x\right)^{2} \cos x \, dx.$

(3)

	Leave
Question 4 continued	Dialik
Question i continued	

figures.	The curve C is rotated through 2π radians about the x -axis. Using calculus, find the area of the surface generated, giving your answer to 3 signif		
	figures.		
		(5)	

(5)

(4)

Leave blank

3. Show that

	8	1	
(a)	$\int_{5}^{-} x$	$\frac{1}{-10x+34} dx = k\pi$, giving the value of the fraction k,	

(b) $\int_{5}^{8} \frac{1}{\sqrt{(x^2 - 10x + 34)}} dx = \ln(A + \sqrt{n}), \text{ giving the values of the integers } A \text{ and } n.$

4.

$$I_n = \int_1^e x^2 (\ln x)^n \, \mathrm{d}x, \quad n \geqslant 0$$

(a) Prove that, for $n \ge 1$,

$$I_n = \frac{e^3}{3} - \frac{n}{3} I_{n-1}$$

(b) Find the exact value of I_3 .

(4)

(4)

Question 4 continued	blank

2.

Figure 1

The curve C, shown in Figure 1, has equation

$$y = \frac{1}{3}\cosh 3x, \qquad 0 \leqslant x \leqslant \ln a$$

where a is a constant and a > 1

Using calculus, show that the length of curve C is

$$k(a^3 - \frac{1}{a^3})$$

and state the value of the constant k.

1	6	1
1	v	١.

4.

$$I_n = \int_0^{\frac{\pi}{4}} x^n \sin 2x \, dx, \qquad n \geqslant 0$$

(a) Prove that, for $n \ge 2$,

$$I_n = \frac{1}{4} n \left(\frac{\pi}{4}\right)^{n-1} - \frac{1}{4} n(n-1) I_{n-2}$$

(5)

(b) Find the exact value of I_2

(4)

(c) Show that $I_4 = \frac{1}{64} (\pi^3 - 24\pi + 48)$

(2)

	Leave blank
Question 4 continued	

(3)

Leave
blank

- 5. (a) Differentiate $x \operatorname{arsinh} 2x$ with respect to x.
 - (b) Hence, or otherwise, find the exact value of

$$\int_0^{\sqrt{2}} \operatorname{arsinh} 2x \, \mathrm{d}x$$

giving your answe	u in tha f	Forms 11m D + C	rribana 1 D	and Cara real
giving your answe	r in the r		where A. D	and C are real.
6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		- ,	,	

(7)

		_
		-
		-
		-
		_
		-
		-
		-
		_
		_
		-
		_
		-
		_
		_
		-
		_
		-
		_
		_
		_
		-
		-
		_
		_
		-
		-

7	f(x) $f(x)$ $f(x)$ $f(x)$	TD
/·	$f(x) = 5 \cosh x - 4 \sinh x$	$x \in \mathbb{R}$

(a) Show that
$$f(x) = \frac{1}{2} (e^x + 9e^{-x})$$

(2)

Hence

(b) solve
$$f(x) = 5$$

(4)

(c) show that
$$\int_{\frac{1}{2}\ln 3}^{\ln 3} \frac{1}{5\cosh x - 4\sinh x} dx = \frac{\pi}{18}$$

(5)

5.

$$I_n = \int_1^5 x^n (2x - 1)^{-\frac{1}{2}} dx, \quad n \geqslant 0$$

(a) Prove that, for $n \ge 1$,

$$(2n+1)I_n = nI_{n-1} + 3 \times 5^n - 1$$

(5)

(b) Using the reduction formula given in part (a), find the exact value of I_2

(5)

	blank
Question 5 continued	

7.

Figure 1

The curves shown in Figure 1 have equations

$$y = 6 \cosh x$$
 and $y = 9 - 2 \sinh x$

(a) Using the definitions of $\sinh x$ and $\cosh x$ in terms of e^x , find exact values for the x-coordinates of the two points where the curves intersect.

(6)

The finite region between the two curves is shown shaded in Figure 1.

(b) Using calculus, find the area of the shaded region, giving your answer in the form $a \ln b + c$, where a, b and c are integers.

(6)

		_
		_
		_
		_
		_
		_
		_

blank

8.

Figure 2

The curve C, shown in Figure 2, has equation

$$y = 2x^{\frac{1}{2}}, \qquad 1 \leqslant x \leqslant 8$$

(a) Show that the length s of curve C is given by the equation

$$s = \int_{1}^{8} \sqrt{\left(1 + \frac{1}{x}\right)} \mathrm{d}x$$

(2)

(b) Using the substitution $x = \sinh^2 u$, or otherwise, find an exact value for s.

Give your answer in the form $a\sqrt{2} + \ln(b + c\sqrt{2})$ where a, b and c are integers.

(9)	
(\mathcal{I})	

2	8

2. (a) Find

$$\int \frac{1}{\sqrt{4x^2+9}} \, \mathrm{d}x$$

(2)

June 2013

(b) Use your answer to part (a) to find the exact value of

$$\int_{-3}^{3} \frac{1}{\sqrt{4x^2 + 9}} \, \mathrm{d}x$$

giving your answer in the form $k \ln(a + b\sqrt{5})$, where a and b are integers and k is a constant.

(3)

blank

3.	The c	urve	with	parametric	equations
-----------	-------	------	------	------------	-----------

$$x = \cosh 2\theta$$
, $y = 4 \sinh \theta$, $0 \le \theta \le 1$

is rotated through 2π radians about the *x*-axis.

Show that the area of the surface generated is $\lambda(\cosh^3 \alpha - 1)$, where $\alpha = 1$ and λ is a constant to be found.

(7)

6. Given that

$$I_n = \int_0^4 x^n \sqrt{(16 - x^2)} dx, \quad n \geqslant 0,$$

(a) prove that, for $n \ge 2$,

$$(n+2)I_n = 16(n-1)I_{n-2}$$

(6)

(b) Hence, showing each step of your working, find the exact value of I_5

(5)

uestion 6 continued		

Further Pure Mathematics FP3

Candidates sitting FP3 may also require those formulae listed under Further Pure Mathematics FP1, and Core Mathematics C1–C4.

Vectors

The resolved part of \mathbf{a} in the direction of \mathbf{b} is $\frac{\mathbf{a.b}}{|\mathbf{b}|}$

The point dividing AB in the ratio $\lambda : \mu$ is $\frac{\mu \mathbf{a} + \lambda \mathbf{b}}{\lambda + \mu}$

Vector product:
$$\mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \sin \theta \, \hat{\mathbf{n}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{pmatrix}$$

$$\mathbf{a.(b\times c)} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = \mathbf{b.(c\times a)} = \mathbf{c.(a\times b)}$$

If A is the point with position vector $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ and the direction vector \mathbf{b} is given by $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$, then the straight line through A with direction vector \mathbf{b} has cartesian equation

$$\frac{x - a_1}{b_1} = \frac{y - a_2}{b_2} = \frac{z - a_3}{b_3} (= \lambda)$$

The plane through A with normal vector $\mathbf{n} = n_1 \mathbf{i} + n_2 \mathbf{j} + n_3 \mathbf{k}$ has cartesian equation

$$n_1 x + n_2 y + n_3 z + d = 0$$
 where $d = -a.n$

The plane through non-collinear points A, B and C has vector equation

$$\mathbf{r} = \mathbf{a} + \lambda(\mathbf{b} - \mathbf{a}) + \mu(\mathbf{c} - \mathbf{a}) = (1 - \lambda - \mu)\mathbf{a} + \lambda\mathbf{b} + \mu\mathbf{c}$$

The plane through the point with position vector **a** and parallel to **b** and **c** has equation $\mathbf{r} = \mathbf{a} + s\mathbf{b} + t\mathbf{c}$

The perpendicular distance of
$$(\alpha, \beta, \gamma)$$
 from $n_1x + n_2y + n_3z + d = 0$ is $\frac{\left|n_1\alpha + n_2\beta + n_3\gamma + d\right|}{\sqrt{n_1^2 + n_2^2 + n_3^2}}$.

Hyperbolic functions

$$\cosh^{2} x - \sinh^{2} x = 1$$

$$\sinh 2x = 2 \sinh x \cosh x$$

$$\cosh 2x = \cosh^{2} x + \sinh^{2} x$$

$$\operatorname{arcosh} x = \ln\left\{x + \sqrt{x^{2} - 1}\right\} \quad (x \ge 1)$$

$$\operatorname{arsinh} x = \ln\left\{x + \sqrt{x^{2} + 1}\right\}$$

$$\operatorname{artanh} x = \frac{1}{2}\ln\left(\frac{1 + x}{1 - x}\right) \quad (|x| < 1)$$

Conics

	Ellipse	Parabola	Hyperbola	Rectangular Hyperbola
Standard Form	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$y^2 = 4ax$	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$xy = c^2$
Parametric Form	$(a\cos\theta,b\sin\theta)$	$(at^2, 2at)$	$(a \sec \theta, b \tan \theta)$ $(\pm a \cosh \theta, b \sinh \theta)$	$\left(ct, \frac{c}{t}\right)$
Eccentricity	$e < 1$ $b^2 = a^2(1 - e^2)$	e=1	$e > 1$ $b^2 = a^2(e^2 - 1)$	$e = \sqrt{2}$
Foci	(±ae,0)	(a, 0)	(±ae, 0)	$(\pm\sqrt{2}c,\pm\sqrt{2}c)$
Directrices	$x = \pm \frac{a}{e}$	x = -a	$x = \pm \frac{a}{e}$	$x + y = \pm \sqrt{2}c$
Asymptotes	none	none	$\frac{x}{a} = \pm \frac{y}{b}$	x = 0, y = 0

Differentiation

$$f(x) f'(x)$$

$$\operatorname{arcsin} x \frac{1}{\sqrt{1-x^2}}$$

$$\operatorname{arccos} x -\frac{1}{\sqrt{1-x^2}}$$

$$\operatorname{arctan} x \frac{1}{1+x^2}$$

$$\operatorname{sinh} x \operatorname{cosh} x$$

$$\operatorname{cosh} x \sinh x$$

$$\operatorname{tanh} x \operatorname{sech}^2 x$$

$$\operatorname{arsinh} x \frac{1}{\sqrt{1+x^2}}$$

$$\operatorname{arcosh} x \frac{1}{\sqrt{x^2-1}}$$

$$\operatorname{artanh} x \frac{1}{1+x^2}$$

Integration (+ constant; a > 0 where relevant)

Arc length

$$s = \int \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$
 (cartesian coordinates)

$$s = \int \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2} \, \mathrm{d}t \quad \text{(parametric form)}$$

Surface area of revolution

$$S_x = 2\pi \int y \, ds = 2\pi \int y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx$$
$$= 2\pi \int y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt$$

Further Pure Mathematics FP1

Candidates sitting FP1 may also require those formulae listed under Core Mathematics C1 and C2.

Summations

$$\sum_{r=1}^{n} r^2 = \frac{1}{6} n(n+1)(2n+1)$$

$$\sum_{n=1}^{n} r^3 = \frac{1}{4} n^2 (n+1)^2$$

Numerical solution of equations

The Newton-Raphson iteration for solving f(x) = 0: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Conics

	Parabola	Rectangular Hyperbola
Standard Form	$y^2 = 4ax$	$xy = c^2$
Parametric Form	(at ² , 2at)	$\left(ct, \frac{c}{t}\right)$
Foci	(a, 0)	Not required
Directrices	x = -a	Not required

Matrix transformations

Anticlockwise rotation through θ about $O: \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

Reflection in the line $y = (\tan \theta)x$: $\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$

In FP1, θ will be a multiple of 45°.

Candidates sitting C4 may also require those formulae listed under Core Mathematics C1, C2 and C3.

Integration (+ constant)

$$f(x) \qquad \int f(x) dx$$

$$\sec^2 kx \qquad \frac{1}{k} \tan kx$$

$$\tan x \qquad \ln|\sec x|$$

$$\cot x \qquad \ln|\sin x|$$

$$\csc x \qquad -\ln|\csc x + \cot x|, \quad \ln|\tan(\frac{1}{2}x)|$$

$$\sec x \qquad \ln|\sec x + \tan x|, \quad \ln|\tan(\frac{1}{2}x + \frac{1}{4}\pi)|$$

Candidates sitting C3 may also require those formulae listed under Core Mathematics C1 and C2.

Logarithms and exponentials

$$\mathbf{e}^{x \ln a} = a^x$$

Trigonometric identities

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \qquad (A \pm B \neq (k + \frac{1}{2})\pi)$$

$$\sin A + \sin B = 2 \sin \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\sin A - \sin B = 2 \cos \frac{A + B}{2} \sin \frac{A - B}{2}$$

$$\cos A + \cos B = 2 \cos \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\cos A - \cos B = -2 \sin \frac{A + B}{2} \sin \frac{A - B}{2}$$

Differentiation

f(x) f'(x)
tan kx k sec² kx
sec x sec x tan x
cot x -cosec² x
cosec x -cosec x cot x

$$\frac{f(x)}{g(x)} \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

Candidates sitting C2 may also require those formulae listed under Core Mathematics C1.

Cosine rule

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Binomial series

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^{2} + \dots + \binom{n}{r} a^{n-r} b^{r} + \dots + b^{n} \quad (n \in \mathbb{N})$$

$$\text{where } \binom{n}{r} = {}^{n} \mathbf{C}_{r} = \frac{n!}{r! (n-r)!}$$

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{1 \times 2} x^{2} + \dots + \frac{n(n-1) \dots (n-r+1)}{1 \times 2 \times \dots \times r} x^{r} + \dots \quad (|x| < 1, n \in \mathbb{R})$$

Logarithms and exponentials

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Geometric series

$$u_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1-r}$$
 for $|r| < 1$

Numerical integration

The trapezium rule:
$$\int_a^b y \, dx \approx \frac{1}{2} h\{(y_0 + y_n) + 2(y_1 + y_2 + ... + y_{n-1})\}$$
, where $h = \frac{b-a}{n}$

Mensuration

Surface area of sphere = $4\pi r^2$

Area of curved surface of cone = $\pi r \times \text{slant height}$

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$