FP3 Series & Limits Questions

2 (a) Find
$$\int_0^a xe^{-2x} dx$$
, where $a > 0$. (5 marks)

- (b) Write down the value of $\lim_{a\to\infty} a^k e^{-2a}$, where k is a positive constant. (1 mark)
- (c) Hence find $\int_0^\infty x e^{-2x} dx$. (2 marks)
- 4 (a) Use the series expansion

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \dots$$

to write down the first four terms in the expansion, in ascending powers of x, of ln(1-x). (1 mark)

(b) The function f is defined by

$$f(x) = e^{\sin x}$$

Use Maclaurin's theorem to show that when f(x) is expanded in ascending powers of x:

(i) the first three terms are

$$1 + x + \frac{1}{2}x^2 \tag{6 marks}$$

- (ii) the coefficient of x^3 is zero. (3 marks)
- (c) Find

$$\lim_{x \to 0} \frac{e^{\sin x} - 1 + \ln(1 - x)}{x^2 \sin x}$$
 (4 marks)

5 (a) Show that
$$\lim_{a \to \infty} \left(\frac{3a+2}{2a+3} \right) = \frac{3}{2}$$
. (2 marks)

(b) Evaluate $\int_{1}^{\infty} \left(\frac{3}{3x+2} - \frac{2}{2x+3} \right) dx$, giving your answer in the form $\ln k$, where k is a rational number. (5 marks)

- 7 (a) (i) Write down the first three terms of the binomial expansion of $(1 + y)^{-1}$, in ascending powers of y. (1 mark)
 - (ii) By using the expansion

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$$

and your answer to part (a)(i), or otherwise, show that the first three non-zero terms in the expansion, in ascending powers of x, of $\sec x$ are

$$1 + \frac{x^2}{2} + \frac{5x^4}{24}$$
 (5 marks)

(b) By using Maclaurin's theorem, or otherwise, show that the first two non-zero terms in the expansion, in ascending powers of x, of $\tan x$ are

$$x + \frac{x^3}{3} \tag{3 marks}$$

(c) Hence find
$$\lim_{x \to 0} \left(\frac{x \tan 2x}{\sec x - 1} \right)$$
. (4 marks)

4 (a) Explain why $\int_0^e \frac{\ln x}{\sqrt{x}} dx$ is an improper integral. (1 mark)

(b) Use integration by parts to find $\int x^{-\frac{1}{2}} \ln x \, dx$. (3 marks)

(c) Show that $\int_0^e \frac{\ln x}{\sqrt{x}} dx$ exists and find its value. (4 marks)

- 6 The function f is defined by $f(x) = (1 + 2x)^{\frac{1}{2}}$.
 - (a) (i) Find f'''(x). (4 marks)
 - (ii) Using Maclaurin's theorem, show that, for small values of x,

$$f(x) \approx 1 + x - \frac{1}{2}x^2 + \frac{1}{2}x^3$$
 (4 marks)

(b) Use the expansion of e^x together with the result in part (a)(ii) to show that, for small values of x,

$$e^{x}(1+2x)^{\frac{1}{2}} \approx 1+2x+x^{2}+kx^{3}$$

where k is a rational number to be found.

- (3 marks)
- (c) Write down the first four terms in the expansion, in ascending powers of x, of e^{2x} .

 (1 mark)
- (d) Find

$$\lim_{x \to 0} \frac{e^x (1 + 2x)^{\frac{1}{2}} - e^{2x}}{1 - \cos x}$$
 (4 marks)

6 (a) The function f is defined by

$$f(x) = \ln(1 + e^x)$$

Use Maclaurin's theorem to show that when f(x) is expanded in ascending powers of x:

(i) the first three terms are

$$\ln 2 + \frac{1}{2}x + \frac{1}{8}x^2 \tag{6 marks}$$

- (ii) the coefficient of x^3 is zero. (3 marks)
- (b) Hence write down the first two non-zero terms in the expansion, in ascending powers of x, of $\ln\left(\frac{1+e^x}{2}\right)$. (1 mark)
- (c) Use the series expansion

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \dots$$

to write down the first three terms in the expansion, in ascending powers of x, of $\ln\left(1-\frac{x}{2}\right)$. (1 mark)

(d) Use your answers to parts (b) and (c) to find

$$\lim_{x \to 0} \left[\frac{\ln\left(\frac{1+e^x}{2}\right) + \ln\left(1-\frac{x}{2}\right)}{x - \sin x} \right] \tag{4 marks}$$

7 (a) Write down the value of

$$\lim_{x \to \infty} x e^{-x}$$
 (1 mark)

- (b) Use the substitution $u = xe^{-x} + 1$ to find $\int \frac{e^{-x}(1-x)}{xe^{-x} + 1} dx$. (2 marks)
- (c) Hence evaluate $\int_{1}^{\infty} \frac{1-x}{x+e^{x}} dx$, showing the limiting process used. (4 marks)

FP3 Series & Limits Answers

2(a)	$\int xe^{-2x}dx = -\frac{1}{2}xe^{-2x} - \int -\frac{1}{2}e^{-2x}dx$	M1 A1		Reasonable attempt at parts
	$\int_{0}^{a} xe^{-2x} - \frac{1}{4}e^{-2x} \{+c\}$ $\int_{0}^{a} xe^{-2x} dx = -\frac{1}{2}ae^{-2a} - \frac{1}{4}e^{-2a} - (0 - \frac{1}{4})$	A1√		Condone absence of $+c$
	$\int_{0}^{a} x e^{-2x} dx = -\frac{1}{2} a e^{-2a} - \frac{1}{4} e^{-2a} - (0 - \frac{1}{4})$	M1		F(a) - F(0)
	$= \frac{1}{4} - \frac{1}{2}ae^{-2a} - \frac{1}{4}e^{-2a}$	A1	5	
(b)	$\lim_{a \to \infty} a^k e^{-2a} = 0$	B1	1	
(c)	$\int_{0}^{\infty} x e^{-2x} dx =$			
	$= \lim_{a \to \infty} \left\{ \frac{1}{4} - \frac{1}{2} a e^{-2a} - \frac{1}{4} e^{-2a} \right\}$	M1		If this line oe is missing then 0/2
	$= \frac{1}{4} - 0 - 0 = \frac{1}{4}$	A1√	2	On candidate's "1/4" in part (a). B1 must have been earned
	Total		8	

4(a) (b)(i)	$\ln(1-x) = -x - \frac{1}{2}x^2 - \frac{1}{3}x^3 - \frac{1}{4}x^4 \dots$ f(x) = e ^{sin x} \Rightarrow f(0) = 1	B1 B1	1	
	$f'(x) = \cos x e^{\sin x}$ $\Rightarrow f'(0) = 1$	M1A1		
	$f''(x) = -\sin x e^{\sin x} + \cos^2 x e^{\sin x}$ f''(0) = 1	M1A1		Product rule used
	Maclaurin f (x)= f(0)+xf'(0)+ $\frac{x^2}{2}$ f''(0)			
	so 1 st three terms are $1 + x + \frac{1}{2}x^2$	A1	6	CSO AG
(ii)	$f'''(x) = \cos x(\cos^2 x - \sin x) e^{\sin x} +$ $+ \{2\cos x(-\sin x) - \cos x\} e^{\sin x}$	M1A1		
	$f'''(0) = 0$ so the coefficient of x^3 in the series is zero	A1	3	CSO AG SC for (b): Use of series

	Total		14	
	$\lim_{x \to 0} \frac{e^{\sin x} - 1 + \ln(1 - x)}{x^2 \sin x} = -\frac{1}{3}$	A1√	4	On candidate's x^3 coefficient in (a) provided lower powers cancel
	$= \frac{-\frac{1}{3} + o(x)}{1 + o(x^2)}$			Condone if this step is missing
	$\frac{e^{\sin x} - 1 + \ln(1 - x)}{x^2 \sin x} = \frac{-\frac{1}{3}x^3 + o(x^4)}{x^3}$	M1 A1		Series from (a) & (b) used Numerator kx^3 (+)
(c)	$\sin x \approx x$.	В1		Ignore higher power terms in sinx expansion
				expansionsmax of 4/9

5(a)
$$\Rightarrow \lim_{a \to \infty} \left(\frac{3 + \frac{2}{a}}{2 + \frac{3}{a}} \right) = \frac{3 + 0}{2 + 0} = \frac{3}{2}$$
(b)
$$\int_{1}^{\infty} \frac{3}{(3x + 2)} - \frac{2}{2x + 3} dx$$

$$= \left[\ln(3x + 2) - \ln(2x + 3) \right]_{1}^{\infty}$$

$$= \left[\ln\left(\frac{3x + 2}{2x + 3}\right) \right]_{1}^{\infty}$$

$$= \ln\left\{ \lim_{a \to \infty} \left(\frac{3a + 2}{2a + 3}\right) \right\} - \ln 1$$

$$= \ln\left\{ \lim_{a \to \infty} \left(\frac{3a + 2}{2a + 3}\right) \right\} - \ln 1$$

$$= \ln\frac{3}{2} - \ln 1 = \ln\frac{3}{2}$$
A1 5 CSO

7(a)(i)	$(1+y)^{-1} = 1 - y + y^2 \dots$	B1	1	
	$\sec x \approx \frac{1}{1 - \frac{x^2}{2} + \frac{x^4}{24} \dots}$	В1		
	$= \left[1 - \frac{x^2}{2} + \frac{x^4}{24} \dots\right]^{-1} =$	M1		
	$\left\{1 - \left(-\frac{x^2}{2} + \frac{x^4}{24}\right) + \left(-\frac{x^2}{2} + \frac{x^4}{24}\right)^2\right\}$	М1		
	$= \left\{ 1 + \frac{x^2}{2} - \frac{x^4}{24} + \frac{x^4}{4} + \dots \right\}$			
	$=1+\frac{x^2}{2};+\frac{5x^4}{24}$	A1;A1	5	AG be convinced
	Alternative: Those using Maclaurin			
	$f(x) = \sec x$			
	$f(0) = 1; \underline{f'(x)} = \underbrace{\sec x \tan x}_{2}; \{f'(0) = 0\}$	(<u>B1</u>)		
	$f''(x) = \sec x \tan^2 x + \sec^3 x$; $f''(0) = 1$	(M1)		Product rule oe
	$f'''(x) = \sec x \tan^3 x + 5\tan x \sec^3 x;$	(m1)		Chain rule with product rule OE
	$f^{(iv)}(x) = \sec x \tan^4 x + 18\tan^2 x \sec^3 x \dots +5\sec^5 x \implies f^{(iv)}(0) = 5$			
	$\sec x \approx \text{printed result}$	(A2)		CSO AG
(b)	$f(x) = \tan x;$ $f(0) = 0; f'(x) = \sec^2 x; \{f'(0) = 1\}$	В1		
	$f''(x) = 2\sec x(\sec x \tan x); f''(0) = 0$			
Į	$f'''(x) = 4\sec x \tan x(\sec x \tan x) + 2\sec^4 x$	M1		Chain rule with product rule oe
	f'''(0) = 2			
	$\tan x = 0 + 1x + 0x^2 + \frac{2}{3!}x^3 \dots = x + \frac{1}{3}x^3$	A1	3	CSO AG
	Alternative: Those using otherwise			
	$ = \frac{\sin x}{\cos x} \approx \left(x - \frac{x^3}{6}\right) \left(1 + \frac{x^2}{2}\right)$	(M1) (A1)		
	$= x + \frac{x^3}{2} - \frac{x^3}{6} \dots = x + \frac{1}{3}x^3 \dots$	(A1)		
(c)	$\left(\frac{x\tan 2x}{\sec x - 1}\right) = \frac{x\left(2x + o(x^3)\right)}{\frac{x^2}{2} + o(x^4)}$	В1		$\tan 2x = 2x + \frac{1}{3}(2x)^3$
	$(\sec x - 1)$ $\frac{x^2}{2} + o(x^4)$	M1		Condone $o(x^k)$ missing
	$= \frac{2 + o(x^2)}{\frac{1}{2} + o(x^2)}$	M1		
	$\lim_{x \to 0} \left(\frac{x \tan 2x}{\sec x - 1} \right) = 4$	A1√	4	ft on $2k$ after B0 for $\tan 2x = kx + \dots$
			12	
	Total		13	

4(a) Integrand is not defined at
$$x = 0$$

(b)
$$\int x^{-\frac{1}{2}} \ln x \, dx = 2x^{\frac{1}{2}} \ln x - \int 2x^{\frac{1}{2}} \left(\frac{1}{x}\right) dx$$

M1

A1

..... = $2x^{\frac{1}{2}} \ln x - 4x^{\frac{1}{2}} (+c)$

A1

3 Condone absence of '+ c'

(c)
$$\int_0^c \frac{\ln x}{\sqrt{x}} \, dx = \lim_{a \to 0} \int_a^c \frac{\ln x}{\sqrt{x}} \, dx$$

$$= -2e^{\frac{1}{2}} - \lim_{a \to 0} \left[2a^{\frac{1}{2}} \ln a - 4a^{\frac{1}{2}}\right]$$

But
$$\lim_{a \to 0} a^{\frac{1}{2}} \ln a = 0$$

B1

Accept a general form e.g.
$$\lim_{x \to 0} x^k \ln x = 0$$

So
$$\int_0^c \frac{\ln x}{\sqrt{x}} \, dx$$
 exists and
$$= -2e^{\frac{1}{2}}$$

A1

4

(c)
$$e^{2x} = 1 + 2x + x^{2} + \frac{2}{3}x^{3}$$

$$= 1 + 2x + 2x^{2} + \frac{4}{3}x^{3} + \dots$$

$$= 1 + 2x + 2x^{2} + \frac{4}{3}x^{3} + \dots$$

$$= 1 + 2x + 2x^{2} + \frac{4}{3}x^{3} + \dots$$
B1
$$\frac{e^{x}(1 + 2x)^{\frac{1}{2}} - e^{2x}}{1 - \cos x} = \frac{1 + 2x + x^{2} + \frac{2}{3}x^{3} - \left[1 + 2x + 2x^{2} + \frac{4}{3}x^{3}\right]}{\frac{1}{2}x^{2} + \left\{o(x^{4})\right\}}$$

$$\lim_{x \to 0} \dots = \lim_{x \to 0} \frac{-x^{2} + \left\{o(x^{3})\right\}}{\frac{1}{2}x^{2} + \left\{o(x^{4})\right\}} = \frac{1}{2}$$
A1F
$$\lim_{x \to 0} \frac{-1 + o(x)}{\frac{1}{2} + o(x^{2})} = -2$$
A1F
$$4$$
If a slip but must see the intermediate stage

SC for those not using Maclaurin's theorem: maximum of 4/9

7(a)	0	B1	1	
(b)	$u = xe^{-x} + 1 \Rightarrow du = (e^{-x} - xe^{-x})dx$	M1		Attempts to find du
	$\int \frac{e^{-x}(1-x)}{xe^{-x}+1} dx = \int \frac{1}{u} du = \ln u + c$			
	$= \ln\left(x\mathrm{e}^{-x} + 1\right) \left\{+ c\right\}$	A1	2	Condone missing c
(c)	$\int \frac{1-x}{x+e^x} dx = \int \frac{e^{-x}(1-x)}{xe^{-x}+1} dx$	В1		
	$\int_{1}^{\infty} \frac{1-x}{x+e^{x}} dx = \lim_{a \to \infty} \left[\ln(xe^{-x} + 1) \right]_{1}^{a}$			
	$= \lim_{a \to \infty} \left\{ \ln \left(a e^{-a} + 1 \right) \right\} - \ln \left(e^{-1} + 1 \right)$	M1		For using part (b) and $F(B) - F(A)$
	$= \ln \left\{ \lim_{a \to \infty} \left(a e^{-a} + 1 \right) \right\} - \ln \left(e^{-1} + 1 \right)$			
	$= \ln 1 - \ln \left(e^{-1} + 1 \right) = -\ln \left(e^{-1} + 1 \right)$	M1 A1	4	For using limiting process
	Total		7	