FP3 Second Order Differential Equation Questions

- 1 (a) Find the roots of the equation $m^2 + 2m + 2 = 0$ in the form a + ib. (2 marks)
 - (b) (i) Find the general solution of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2\frac{\mathrm{d}y}{\mathrm{d}x} + 2y = 4x \tag{6 marks}$$

- (ii) Hence express y in terms of x, given that y = 1 and $\frac{dy}{dx} = 2$ when x = 0.

 (4 marks)
- 1 It is given that y satisfies the differential equation

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 4y = 8x - 10 - 10\cos 2x$$

- (a) Show that $y = 2x + \sin 2x$ is a particular integral of the given differential equation. (3 marks)
- (b) Find the general solution of the differential equation. (4 marks)
- (c) Hence express y in terms of x, given that y = 2 and $\frac{dy}{dx} = 0$ when x = 0. (4 marks)

6 (a) Show that the substitution

$$u = \frac{\mathrm{d}y}{\mathrm{d}x} + 2y$$

transforms the differential equation

$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = e^{-2x}$$

into

$$\frac{\mathrm{d}u}{\mathrm{d}x} + 2u = \mathrm{e}^{-2x} \tag{4 marks}$$

(b) By using an integrating factor, or otherwise, find the general solution of

$$\frac{\mathrm{d}u}{\mathrm{d}x} + 2u = \mathrm{e}^{-2x}$$

giving your answer in the form u = f(x).

(5 marks)

(c) Hence find the general solution of the differential equation

$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = e^{-2x}$$

giving your answer in the form y = g(x).

(5 marks)

(4 marks)

5 Find the general solution of the differential equation

$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 3y = 6 + 5\sin x$$
 (12 marks)

1 (a) Find the value of the constant k for which kx^2e^{5x} is a particular integral of the differential equation

$$\frac{d^2y}{dx^2} - 10\frac{dy}{dx} + 25y = 6e^{5x}$$
 (6 marks)

(b) Hence find the general solution of this differential equation.

5 (a) A differential equation is given by

$$(x^2 - 1)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} = x^2 + 1$$

Show that the substitution

$$u = \frac{\mathrm{d}y}{\mathrm{d}x} + x$$

transforms this differential equation into

$$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{2xu}{x^2 - 1} \tag{4 marks}$$

(b) Find the general solution of

$$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{2xu}{x^2 - 1}$$

giving your answer in the form u = f(x).

(5 marks)

(c) Hence find the general solution of the differential equation

$$(x^2 - 1)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} = x^2 + 1$$

giving your answer in the form y = g(x).

(3 marks)

FP3 Second Order Differential Equation Answers

1(a)	$(m+1)^2 = -1$ $m = -1 \pm i$	M1		Completing sq or formula
	$m = -1 \pm i$	A1	2	
(b)(i)	CF is $e^{-x}(A \cos x + B \sin x)$ {or $e^{-x}A \cos(x + B)$ but not $Ae^{(-1+i)x} + Be^{(-1-i)x}$ }	M1 A1√		If <i>m</i> is real give M0 On wrong <i>a</i> 's and <i>b</i> 's but roots must be complex.
	$\{P.Int.\}\ try\ y = px + q$	M1		OE
	2p + 2(px + q) = 4x	A1		
	p = 2, q = -2	A1√		On one slip
	GS $y = e^{-x}(A\cos x + B\sin x) + 2x - 2$	B1√	6	Their CF + their PI with two arbitrary constants.
(ii)	$x=0, y=1 \Rightarrow A=3$	B1√		Provided an M1gained in (b)(i)
	$y'(x) = -e^{-x}(A\cos x + B\sin x) +$	M1		Product rule used
	$+ e^{-x} (-A\sin x + B\cos x) + 2$	A1√		
	$y'(0) = 2 \Rightarrow 2 = -A + B + 2 \Rightarrow B = 3$	A1√		Slips
	$y = 3e^{-x}(\cos x + \sin x) + 2x - 2$		4	
		Total	12	

1(a)	$y = 2x + \sin 2x \Rightarrow y' = 2 + 2\cos 2x$ $\Rightarrow y'' = -4\sin 2x$	M1 A1		Need to attempt both y' and y"
	$-4\sin 2x - 5(2 + 2\cos 2x) + 4(2x + \sin 2x) = 8x - 10 - 10\cos 2x$	A1	3	CSO AG Substitute. and confirm correct
(b) (c)	Auxiliary equation $m^2 - 5m + 4 = 0$ m = 4 and 1 CF: $A e^{4x} + B e^x$ GS: $y = A e^{4x} + B e^x + 2x + \sin 2x$ $x = 0, y = 2 \Rightarrow 2 = A + B$ $x = 0, y' = 0 \Rightarrow 0 = 4A + B + 4$	M1 A1 M1 B1√ B1√	4	Their CF + $2x + \sin 2x$ Only ft if exponentials in GS Only ft if exponentials in GS and differentiated four terms at least
	Solving the simultaneous equations gives $A = -2$ and $B = 4$ $y = -2e^{4x} + 4e^x + 2x + \sin 2x$	M1 A1	4	
	Total		11	

6(a)	$u = \frac{dy}{dx} + 2y \implies \frac{du}{dx} = \frac{d^2y}{dx^2} + 2\frac{dy}{dx}$	M1 A1		2 terms correct
	ar ar ar	Al		
	LHS of DE $\Rightarrow \frac{du}{dx} - 2\frac{dy}{dx} + 4\frac{dy}{dx} + 4y$			
	LHS: $\frac{du}{dx} + 2(u - 2y) + 4y$	M1		Substitution into LHS of DE as far as no derivatives of y
	$\Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} + 2u = \mathrm{e}^{-2x}$	A1	4	CSO AG
(b)	IF IS e ^e – e	В1		
	$\frac{\mathrm{d}}{\mathrm{d}x} \Big[u \mathrm{e}^{2x} \Big] = 1$	M1 A1		
	$\Rightarrow ue^{2x} = x + A$	A1		
	$\Rightarrow u = xe^{-2x} + Ae^{-2x}$	A1	5	
	Alternative: Those using CF+PI Auxiliary equation,			
	$m+2=0 \Rightarrow u_{CF}=Ae^{-2x}$	B1		
	For u_{PI} try $u_{PI} = kxe^{-2x} \implies$	M1		
	$ke^{-2x} - 2kxe^{-2x} + 2kxe^{-2x} \{= e^{-2x}\}$	A1		LHS
	$\Rightarrow k = 1 \Rightarrow u_{PI} = xe^{-2x}$	A1		
	$\Rightarrow u_{GS} = Ae^{-2x} + xe^{-2x}$	A1		
(c)	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} + 2y = x\mathrm{e}^{-2x} + A\mathrm{e}^{-2x}$	M1		Use (b) to reach a 1^{st} order DE in y and x
	IF is $e^{\int 2dx} = e^{2x}$	B1		
	$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left[y \mathrm{e}^{2x} \right] = x + A$	A1√		
	$\Rightarrow ye^{2x} = \frac{x^2}{2} + Ax + B$	A1√		
	$\Rightarrow y = e^{-2x} \left(\frac{x^2}{2} + Ax + B \right)$	A1	5	
	Total		14	

	Total		12	
				(must have exactly two arbitrary constants)
	GS: $y = A e^{3x} + B e^{x} + 2 + 0.5 \sin x + \cos x$	B1F	12	y = candidate's CF and candidate's PI
	c = 1	A1F		ft a slip
	b = 0.5,	A1F		ft a slip
	4c + 2b = 5 and $2c - 4b = 0$	A1		
	a=2	B1		
	Substitute into DE gives	M1		
	$y''(x) = -b\sin x - c\cos x$	A1F		ft can be consistent sign error(s)
	$y'(x) = b\cos x - c\sin x$	A1		
	PI Try $y = a + b \sin x + c \cos x$	M1		Condone 'a' missing here
	CF is $A e^{3x} + B e^{x}$	A1F		
	m=3 and 1	A1		PI
5	Auxl. eqn $m^2 - 4m + 3 = 0$	M1		PI

	GS $y = (A + Bx)e^{5x} + 3x^2e^{5x}$	M1 A1ft	4	Their CF + their/our PI ft only on wrong value of k
	CF is $(A+Bx)e^{5x}$	M1		
(b)	Aux. eqn. $m^2 - 10m + 25 = 0 \Rightarrow m = 5$	B1		PI
	$2k = 6 \implies k = 3$	A1ft	6	Only ft if xe^{5x} and x^2e^{5x} terms all cancel out
	$-10(2kxe^{-1}+5kx^{2}e^{-1})+25kx^{2}e^{-1}=6e^{-1}$	M1 A1		Substitution into differential equation
	$-10(2kxe^{5x} + 5kx^2e^{5x}) + 25kx^2e^{5x} = 6e^{5x}$			
	$\Rightarrow 2ke^{5x} + 20kxe^{5x} + 25kx^2e^{5x}$			
	$\Rightarrow y'' = 2ke^{5x} + 10kxe^{5x} + 10kxe^{5x} + 25kx^2e^{5x}$	A1ft		
1(a)	$y_{\text{PI}} = kx^2 e^{5x} \Rightarrow y' = 2kxe^{5x} + 5kx^2 e^{5x}$	M1 A1		Product rule to differentiate x^2e^{5x}

	Total		12	
		A1ft	3	
	$y = A\left(\frac{x^3}{3} - x\right) - \frac{x^2}{2} + B$	M1		Solution must have two different constants and correct method used to solve the DE
	$\frac{\mathrm{d}y}{\mathrm{d}x} = A(x^2 - 1) - x$			
(c)	$\Rightarrow \frac{1}{dx} = \frac{1}{x^2 - 1}$ $\int \frac{1}{u} du = \int \frac{2x}{x^2 - 1} dx$ $\ln u = \ln x^2 - 1 + \ln A$ $u = A(x^2 - 1)$ $\frac{dy}{dx} + x = A(x^2 - 1)$ $\frac{dy}{dx} = A(x^2 - 1) - x$ $y = A\left(\frac{x^3}{3} - x\right) - \frac{x^2}{2} + B$	M1		Use (b) $(\neq 0)$ to form DE in y and x
	$u = A \left(x^2 - 1 \right)$	A 1	5	
	$\ln u = \ln \left x^2 - 1 \right + \ln A$	A1A1		
(b)	$\int \frac{1}{u} \mathrm{d}u = \int \frac{2x}{x^2 - 1} \mathrm{d}x$	M1 A1		Separate variables
	$\Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{2xu}{x^2 - 1}$	A1	4	CSO; AG
	$DE \Rightarrow (x^2 - 1)\frac{du}{dx} - 2xu = 0$			
	$u = \frac{dy}{dx} + x \implies \frac{du}{dx} = \frac{d^2y}{dx^2} + 1$ $(x^2 - 1)\left(\frac{du}{dx} - 1\right) - 2x(u - x) = x^2 + 1$ $DE \implies (x^2 - 1)\frac{du}{dx} - 2xu = 0$	M1		Substitution into LHS of DE as far as no ys
5(a)	$u = \frac{\mathrm{d}y}{\mathrm{d}x} + x \implies \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + 1$	M1A1		