FP3 Polar Coordinates Questions

- 6 (a) A circle C_1 has cartesian equation $x^2 + (y 6)^2 = 36$. Show that the polar equation of C_1 is $r = 12 \sin \theta$. (4 marks)
 - (b) A curve C_2 with polar equation $r = 2\sin\theta + 5$, $0 \le \theta \le 2\pi$ is shown in the diagram.

Calculate the area bounded by C_2 .

(6 marks)

(c) The circle C_1 intersects the curve C_2 at the points P and Q. Find, in surd form, the area of the quadrilateral OPMQ, where M is the centre of the circle and O is the pole.

(6 marks)

4 The diagram shows the curve C with polar equation

$$r = 6(1 - \cos \theta), \qquad 0 \le \theta < 2\pi$$

- (a) Find the area of the region bounded by the curve C. (6 marks)
- (b) The circle with cartesian equation $x^2 + y^2 = 9$ intersects the curve C at the points A and B.
 - (i) Find the polar coordinates of A and B. (4 marks)
 - (ii) Find, in surd form, the length of AB. (2 marks)
- 2 A curve has polar equation $r(1 \sin \theta) = 4$. Find its cartesian equation in the form y = f(x).

7 A curve C has polar equation

$$r = 6 + 4\cos\theta$$
, $-\pi \le \theta \le \pi$

The diagram shows a sketch of the curve C, the pole O and the initial line.

(a) Calculate the area of the region bounded by the curve C.

(6 marks)

(b) The point P is the point on the curve C for which $\theta = \frac{2\pi}{3}$.

The point Q is the point on C for which $\theta = \pi$.

Show that QP is parallel to the line $\theta = \frac{\pi}{2}$.

(4 marks)

(c) The line PQ intersects the curve C again at a point R.

The line RO intersects C again at a point S.

(i) Find, in surd form, the length of PS.

(4 marks)

(ii) Show that the angle *OPS* is a right angle.

(1 mark)

- 4 (a) Show that $(\cos \theta + \sin \theta)^2 = 1 + \sin 2\theta$. (1 mark)
 - (b) A curve has cartesian equation

$$(x^2 + y^2)^3 = (x + y)^4$$

Given that $r \ge 0$, show that the polar equation of the curve is

$$r = 1 + \sin 2\theta \tag{4 marks}$$

(c) The curve with polar equation

$$r = 1 + \sin 2\theta, \quad -\pi \leqslant \theta \leqslant \pi$$

is shown in the diagram.

- (i) Find the two values of θ for which r = 0. (3 marks)
- (ii) Find the area of one of the loops. (6 marks)

FP3 Polar Coordinates Answers

6(a)	$x^2 + y^2 - 12y + 36 = 36$	M1 M1		Use of $y = r \sin \theta \ (x = r \cos \theta \text{ PI})$ Use of $x^2 + y^2 = r^2$
	$r^2 - 12r\sin\theta + 36 = 36$	m1		,
	$\Rightarrow r = 12\sin\theta$	A1	4	CSO AG
(b)	Area = $\frac{1}{2}\int (2\sin\theta + 5)^2 d\theta$.	M1		Use of $\frac{1}{2}\int r^2 d\theta$.
	= $\frac{1}{2} \int_{0}^{2\pi} (4\sin^2\theta + 20\sin\theta + 25) d\theta$	B1 B1		Correct expn. of $(2\sin\theta+5)^2$ Correct limits
	$= \frac{1}{2} \int_{0}^{2\pi} (2(1 - \cos 2\theta) + 20 \sin \theta + 25) d\theta$	M1		Attempt to write $\sin^2 \theta$ in terms of $\cos 2\theta$.
	$= \frac{1}{2} \left[27\theta - \sin 2\theta - 20\cos \theta \right]_0^{2\pi}$	A1√		Correct integration ft wrong coeffs
	$=27\pi$.	A1	6	CSO
(c)	At intersection $12 \sin \theta = 2 \sin \theta + 5$	M1		OE eg $r = 6(r-5)$
	$\Rightarrow \sin \theta = \frac{5}{10}$	A 1		OE eg $r = 6$
	Points $\left(6, \frac{\pi}{6}\right)$ and $\left(6, \frac{5\pi}{6}\right)$	A1		OE
	<i>OPMQ</i> is a rhombus of side 6			Or two equilateral triangles of side 6
	Area = $6 \times 6 \times \sin \frac{2\pi}{3}$ oe	M1 A1		Any valid complete method to find the area (or half area) of quadrilateral.
	$=18\sqrt{3}$	A1	6	Accept unsimplified surd
	Total		16	

4(a)	Area = $\frac{1}{2}\int 36(1-\cos\theta)^2 d\theta$	M1		use of $\frac{1}{2} \int r^2 d\theta$
	= $\frac{1}{2} \int_{0}^{2\pi} 36(1 - 2\cos\theta + \cos^2\theta) d\theta$	B1 B1		for correct explanation of $[6(1-\cos\theta)]^2$ for correct limits
	$=9\int_{0}^{2\pi}2-4\cos\theta+(\cos2\theta+1)\mathrm{d}\theta$	М1		Attempt to write $\cos^2 \theta$ in terms of $\cos 2\theta$.
	$= \left[27\theta - 36\sin\theta + \frac{9}{2}\sin 2\theta\right]_0^{2\pi}$	A1√		Correct integration; only ft if integrating $a + b\cos\theta + c\cos2\theta$ with non-zero a, b, c .
	$=54\pi$	A1	6	CSO
(b)(i)	$x^{2} + y^{2} = 9 \Rightarrow r^{2} = 9$ $A \& B: 3 = 6 - 6\cos\theta \Rightarrow \cos\theta = \frac{1}{2}$	B1		PI
	$A \& B: 3 = 6 - 6\cos\theta \Rightarrow \cos\theta = \frac{1}{2}$	M1		
	Pts of intersection $\left(3, \frac{\pi}{3}\right)$; $\left(3, \frac{5\pi}{3}\right)$	A1 A1√	4	OE (accept 'different' values of θ not in the given interval)
(ii)	Length $AB = 2 \times r \sin \theta$	M1		
	$\dots = 2 \times 3 \times \frac{\sqrt{3}}{2} = 3\sqrt{3}$	A1	2	OE exact surd form
	Total		12	

2
$$\begin{vmatrix} r - r\sin\theta = 4 \\ r - y = 4 \\ r = y + 4 \\ x^2 + y^2 = (y + 4)^2 \\ x^2 + y^2 = y^2 + 8y + 16 \\ y = \frac{x^2 - 16}{8}$$
A1

M1

B1

A1

A1

 $r \sin\theta = y \text{ stated or used}$
 $r^2 = x^2 + y^2 \text{ used}$

ft one slip

A1

6

(c)(i)
$$OP = 4$$
; $OS = 8$;

Angle $POS = \frac{\pi}{3}$
 $PS^2 = 4^2 + 8^2 - 2 \times 4 \times 8 \times \cos \frac{\pi}{3}$ oe

 $PS = \sqrt{48} \quad \left\{ = 4\sqrt{3} \right\}$

Since $8^2 = 4^2 + \left(\sqrt{48}\right)^2$,

 $OS^2 = OP^2 + PS^2 \Rightarrow OPS$ is a right angle. (Converse of Pythagoras Theorem)

B1

or $S(4, 4\sqrt{3})$ and $P(-2, 2\sqrt{3})$

Cosine rule used in triangle POS
 $OE \quad PS^2 = (4+2)^2 + (4\sqrt{3} - 2\sqrt{3})^2$

E1

1

Accept valid equivalents e.g.

 $PR = 2PQ = 2(2\sqrt{3}) = PS$.

 $\angle SRP = \angle RSP = \angle RPO = \frac{\pi}{6}$
 $\Rightarrow OPS$ is a right angle

4(a)
$$(\cos\theta + \sin\theta)^2 = \cos^2\theta + \sin^2\theta + 2\cos\theta\sin\theta$$

 $= 1 + \sin 2\theta$ B1 1 AG (be convinced)
(b) $(x^2 + y^2)^3 = (x + y)^4$
 $(r^2)^3 = (r\cos\theta + r\sin\theta)^4$ M2,1,0 [M1 for one of $x^2 + y^2 = r^2$ OE, $x = r\cos\theta$, $y = r\sin\theta$ used]
 $r^6 = r^4 (\cos\theta + \sin\theta)^4$ Uses (a) OE at any stage
 $r^6 = r^4 (1 + \sin 2\theta)^2$ A1 4 CSO; AG
(c)(i) $r = 0 \Rightarrow \sin 2\theta = -1$
 $2\theta = \sin^{-1}(-1); = -\frac{\pi}{2}, \frac{3\pi}{2}$ M1

		ı		ı
	$\theta = -\frac{\pi}{4}; \ \frac{3\pi}{4}$	A1A1ft	3	A1 for either
(ii)	Area = $\frac{1}{2}\int (1+\sin 2\theta)^2 d\theta$	M1		Use of $\frac{1}{2}\int r^2 d\theta$
	$= \frac{1}{2} \int (1 + 2\sin 2\theta + \sin^2 2\theta) d\theta$	В1		Correct expansion of $(1+\sin 2\theta)^2$
	$= \frac{1}{2} \int \left(1 + 2\sin 2\theta + \frac{1}{2} \left(1 - \cos 4\theta \right) \right) d\theta$	M1		Attempt to write $\sin^2 2\theta$ in terms of $\cos 4\theta$
	$= \left[\frac{3}{4}\theta - \frac{1}{2}\cos 2\theta - \frac{1}{16}\sin 4\theta \right]$	A1ft		Correct integration ft wrong coefficients only
	$= \left[\frac{3}{4} \theta - \frac{1}{2} \cos 2\theta - \frac{1}{16} \sin 4\theta \right]_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}$			
	$= \left(\frac{9\pi}{16}\right) - \left(-\frac{3\pi}{16}\right)$	m1		Using c's values from (c)(i) as limits or the correct limits
	$=\frac{3\pi}{4}$	A1	6	CSO
	Total		14	