FP3 Introduction to Differential Equations Questions

3 (a) Show that $y = x^3 - x$ is a particular integral of the differential equation

$$\frac{dy}{dx} + \frac{2xy}{x^2 - 1} = 5x^2 - 1$$
 (3 marks)

(b) By differentiating $(x^2 - 1)y = c$ implicitly, where y is a function of x and c is a constant, show that $y = \frac{c}{x^2 - 1}$ is a solution of the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{2xy}{x^2 - 1} = 0 \tag{3 marks}$$

(c) Hence find the general solution of

$$\frac{dy}{dx} + \frac{2xy}{x^2 - 1} = 5x^2 - 1$$
 (2 marks)

3 (a) Show that $\sin x$ is an integrating factor for the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + (\cot x)y = 2\cos x \tag{3 marks}$$

- (b) Solve this differential equation, given that y = 2 when $x = \frac{\pi}{2}$. (6 marks)
- 3 (a) Show that x^2 is an integrating factor for the first-order differential equation

$$\frac{dy}{dx} + \frac{2}{x}y = 3(x^3 + 1)^{\frac{1}{2}}$$
 (3 marks)

- (b) Solve this differential equation, given that y = 1 when x = 2. (6 marks)
- 3 By using an integrating factor, find the solution of the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + (\tan x)y = \sec x$$

given that y = 3 when x = 0. (8 marks)

FP3 Introduction to Differential Equations Answers

3(a)	$y = x^3 - x \Rightarrow y'(x) = 3x^2 - 1$	B1		Accept general cubic.
	$y = x^{3} - x \Rightarrow y'(x) = 3x^{2} - 1$ $\frac{dy}{dx} + \frac{2xy}{x^{2} - 1} = 3x^{2} - 1 + \frac{2x(x^{3} - x)}{x^{2} - 1}$	M1		Substitution into LHS of DE
	$=3x^{2}-1+\frac{2x^{2}(x^{2}-1)}{x^{2}-1}=5x^{2}-1$	A1	3	Completion. If using general cubic all unknown constants must be found
(b)	$\frac{\mathrm{d}}{\mathrm{d}x} \left[(x^2 - 1)y \right] = 2xy + (x^2 - 1)\frac{\mathrm{d}y}{\mathrm{d}x}$	M1A1		
	Differentiating $(x^2 - 1)y = c$ wrt x			SC Differentiated but not implicitly give max of 1/3 for complete solution
	leads to $2xy + (x^2 - 1)\frac{dy}{dx} = 0$			give max of 1/3 for complete solution
	$\Rightarrow y = \frac{c}{x^2 - 1}$ is a soln. of			
	$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{2xy}{x^2 - 1} = 0$	A1	3	Be generous
(c)	$\Rightarrow y = \frac{c}{x^2 - 1}$ is a soln with one arb.			
	constant of $\frac{dy}{dx} + \frac{2xy}{x^2 - 1} = 0$			
	$\Rightarrow y = \frac{c}{x^2 - 1}$ is a CF of the DE			
	GS is CF + PI	M1		Must be using 'hence'; CF and PI
	$y = \frac{c}{x^2 - 1} + x^3 - x$	A1	2	functions of x only CSO
				Must have explicitly considered the link between one arbitrary constant and the GS of a first order differential equation.
	Total		8	

3(a)	IF is e ^{∫cotxdx}	M1		
	$= e^{\ln \sin x}$	A1 A1	2	
(b)	$= \sin x$	AI	3	AG
	$\frac{d}{dx}(y\sin x) = 2\sin x \cos x$	M1 A1		
	$y\sin x = \int \sin 2x \mathrm{d}x$	M1		Method to integrate 2sinxcosx
	$= \sin x$ $\frac{d}{dx}(y\sin x) = 2\sin x \cos x$ $y\sin x = \int \sin 2x dx$ $y\sin x = -\frac{1}{2}\cos 2x + c$ $y = 2 \text{ when } x = \frac{\pi}{2} \Rightarrow$ $2\sin \frac{\pi}{2} = -\frac{1}{2}\cos \pi + c$ $c = \frac{3}{2} \Rightarrow y\sin x = \frac{1}{2}(3 - \cos 2x)$	A1		OE
	$y = 2$ when $x = \frac{\pi}{2} \Rightarrow$			
	$2\sin\frac{\pi}{2} = -\frac{1}{2}\cos\pi + c$	m1		Depending on at least one M
	$c = \frac{3}{2} \Rightarrow y \sin x = \frac{1}{2} (3 - \cos 2x)$	A1	6	OE eg $y \sin x = \sin^2 x + 1$
	Total		9	

$\Rightarrow yx^2 = \frac{\pi}{3}(x^3 + 1)^2 + A$	m1 A1		$k(x^3+1)^{\frac{3}{2}}$ Condone missing 'A'
$\frac{d}{dx} \left[yx^2 \right] = 3x^2 (x^3 + 1)^{\frac{1}{2}}$ $\Rightarrow yx^2 = \frac{2}{3} (x^3 + 1)^{\frac{3}{2}} + A$ $\Rightarrow 4 = \frac{2}{3} (9)^{\frac{3}{2}} + A$ $\Rightarrow A = -14$, ,
$\Rightarrow A = -14$			constant
$\Rightarrow y = x^{-2} \left\{ \frac{2}{3} (x^3 + 1)^{\frac{3}{2}} - 14 \right\}$	A1	6	Any correct form
Total		9	1

	Total		8	provided no errors
	$c = 3 \Rightarrow y \sec x = \tan x + 3$	A1	8	OE; condone solution finishing at $c = 3$
	$y = 3$ when $x = 0 \Rightarrow 3$ sec $0 = 0 + c$	m1		
	$y \sec x = \tan x + c$	A1		Condone missing <i>c</i>
	$y \sec x = \int \sec^2 x \mathrm{d}x$			
	$\frac{\mathrm{d}}{\mathrm{d}x}(y\sec x) = \sec^2 x$	M1A1		
	$= \sec x$	A1ft		ft on earlier sign error
	$= e^{-\ln \cos x} = e^{\ln \sec x}$	A1		Accept either
3	IF is $e^{\int \tan x dx}$	M1		