Solution Bank

Chapter review 5

1
$$
l_1: \mathbf{r} = 3\mathbf{i} + s\mathbf{j} - \mathbf{k}
$$
 and $l_2: \mathbf{r} = 9\mathbf{i} - 2\mathbf{j} - \mathbf{k} + t(\mathbf{i} - 2\mathbf{j} + \mathbf{k})$
\n**a** = 3\mathbf{i} - \mathbf{k} and **b** = **j**
\n**c** = 9\mathbf{i} - 2\mathbf{j} - \mathbf{k} and **d** = $\mathbf{i} - 2\mathbf{j} + \mathbf{k}$
\n**a** - **c** = 3\mathbf{i} - \mathbf{k} - (9\mathbf{i} - 2\mathbf{j} - \mathbf{k})
\n= -6\mathbf{i} + 2\mathbf{j}
\n**b** × **d** = $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1 & 0 \\ 1 & -2 & 1 \end{vmatrix}$
\n= $\mathbf{i}(1 - 0) - \mathbf{j}(0 - 0) + \mathbf{k}(0 - 1)$
\n= $\mathbf{i} - \mathbf{k}$
\nTherefore:
\n $\left| \frac{(-6\mathbf{i} + 2\mathbf{j}) \cdot (\mathbf{i} - \mathbf{k})}{|\mathbf{i} - \mathbf{k}|} \right| = \left| \frac{-6}{\sqrt{1^2 + (-1)^2}} \right|$
\n= $\left| \frac{-6}{\sqrt{2}} \right|$
\n= 3 $\sqrt{2}$

2 l_1 : $\mathbf{r} = (3s-3)\mathbf{i} - s\mathbf{j} + (s+1)\mathbf{k}$ and l_2 : $\mathbf{r} = (3+t)\mathbf{i} + (2t-2)\mathbf{j} + \mathbf{k}$ l_1 : $\mathbf{r} = -3\mathbf{i} + \mathbf{k} + s(3\mathbf{i} - \mathbf{j} + \mathbf{k})$ and l_2 : $\mathbf{r} = 3\mathbf{i} - 2\mathbf{j} + \mathbf{k} + t(3\mathbf{i} + 2\mathbf{j})$ $\mathbf{a} = -3\mathbf{i} + \mathbf{k}$ and $\mathbf{b} = 3\mathbf{i} - \mathbf{j} + \mathbf{k}$ $c = 3i - 2j + k$ and $d = i + 2j$ $a - c = -3i + k - (3i - 2j + k)$ $=-6i + 2j$ $3 -1 1$ 120 \times **d** = 3 – **i jk** $\mathbf{b} \times \mathbf{d}$ $= i(0-2) - j(0-1) + k(6+1)$

 $=-2i + j + 7k$ Therefore:

$$
\left| \frac{(-6\mathbf{i} + 2\mathbf{j}) \cdot (-2\mathbf{i} + \mathbf{j} + 7\mathbf{k})}{|-2\mathbf{i} + \mathbf{j} + 7\mathbf{k}|} \right| = \left| \frac{12 + 2}{\sqrt{(-2)^2 + 1^2 + 7^2}} \right|
$$

$$
= \left| \frac{14}{\sqrt{54}} \right|
$$

$$
= \frac{7\sqrt{6}}{9}
$$

Solution Bank

- **3 a** $\overrightarrow{AB} = (\mathbf{i} 3\mathbf{j} + 5\mathbf{k}) (-\mathbf{j} + 2\mathbf{k}) = \mathbf{i} 2\mathbf{j} + 3\mathbf{k}$ \overrightarrow{CD} = (**j** + 2**k**) – (2**i** – 2**j** + 7**k**) = –2**i** + 3**j** – 5**k** $1 -2 3$ 2 $3 - 5$ *i jk* $p = AB \times CD = | 1 -2 3 | = i - j - k$ -2 3 – \Rightarrow \Rightarrow
	- **b** $\overrightarrow{AC} = (2i 2j + 7k) (-j + 2k) = 2i j + 5k$ \overrightarrow{AC} , $p = (2i - j + 5k)$, $(i - j - k) = 2 + 1 - 5 = -2$
	- **c** The line containing *AB* has equation $\mathbf{r} = -\mathbf{j} + 2\mathbf{k} + \lambda AB$ \rightarrow The line containing *CD* has equation $\mathbf{r} = 2\mathbf{i} - \mathbf{j} + 5\mathbf{k} + \mu CD$ \equiv So the shortest distance between the lines containing *AB* and the line containing *CD* is

$$
\frac{(-\mathbf{j}+2\mathbf{k})-(2\mathbf{i}-\mathbf{j}+5\mathbf{k})\cdot\overrightarrow{AB}\times\overrightarrow{CD}}{\left|\overrightarrow{AB}\times\overrightarrow{CD}\right|}=\left|\frac{\overrightarrow{AC}.p}{\left|p\right|}=\frac{2}{\sqrt{1^2+(-1)^2+(-1)^2}}=\frac{2}{\sqrt{3}}=\frac{2\sqrt{3}}{3}
$$

Solution Bank

4 a Let **m** = \overrightarrow{OM} = -4**i** + **j** - 2**k** Then we seek **r** such that $\mathbf{r} \times \mathbf{m} = 5\mathbf{i} - 10\mathbf{k}$

> Let $\mathbf{r} = (a, b, c)$ be any solution satisfying this equation. $(-2b-c) - j(-2a+4c) + k(a+4b)$ 4 1 -2 $\times OM = |a \quad b \quad c| = \mathbf{i}(-2b-c) - \mathbf{j}(-2a+4c) + \mathbf{k}(a+4b)$ -4 1 – $\mathbf{r} \times \overrightarrow{OM} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a & b & c \end{vmatrix} = \mathbf{i}(-2b-c) - \mathbf{j}(-2a+4c) + \mathbf{k}$ So: $\mathbf{i}(-2b-c) - \mathbf{j}(-2a+4c) + \mathbf{k}(a+4b) = 5\mathbf{i} - 10\mathbf{k}$ Hence: $-2b - c = 5$ (1) $-2a+4c=0$ (2) $a + 4b = -10$ (3) As the solution will be a line, any one of these letters can be arbitrary. Try an arbitrary value $c = 1$: Then from (2): $-2a + 4 = 0$ so $a = 2$ Then from (1): $-2b - 1 = 5$ so $b = -3$

Therefore $\mathbf{r} = (1, -3, 2)$ is on the line *l*.

Now note that as $\mathbf{m} \times \mathbf{m} = 0$, $(\mathbf{r} + t\mathbf{m}) \times \mathbf{m} = 5\mathbf{i} - 10\mathbf{k}$ So the equation of the line *l* is:

$$
\mathbf{r} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} + t \begin{pmatrix} -4 \\ 1 \\ -2 \end{pmatrix}
$$

b When
$$
\lambda = 0
$$
, $\mathbf{r} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$ hence $(2, -3, 1)$ lies on *l*.
\nArea $= \frac{1}{2} |(2\mathbf{i} - 3\mathbf{j} + \mathbf{k}) \times (-4\mathbf{i} + \mathbf{j} - 2\mathbf{k})|$
\n $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -3 & 1 \\ -4 & 1 & -2 \end{vmatrix} = \mathbf{i} (6 - 1) - \mathbf{j} (-4 + 4) + \mathbf{k} (2 - 12)$
\n $= 5\mathbf{i} - 10\mathbf{k}$
\nArea $= \frac{1}{2} |5\mathbf{i} - 10\mathbf{k}|$
\n $= \frac{1}{2} \sqrt{5^2 + (-10)^2}$
\n $= \frac{5\sqrt{5}}{2}$

Solution Bank

5 a $l_1: \mathbf{r} = \mathbf{i} - \mathbf{j} + \lambda(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$ and $l_2: \mathbf{r} = 2\mathbf{i} + \mathbf{j} + \mathbf{k} + \mu(2\mathbf{i} - \mathbf{j} + \mathbf{k})$ 123 $2 -1 1$ = − **i jk n** $= i(2+3) - j(1-6) + k(-1-4)$ $= 5i + 5j - 5k$

b Since \overrightarrow{AB} is perpendicular to l_1 and l_2 it is of the form $k\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 1 1 $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$

Let *A* be the point
$$
\begin{pmatrix} a \\ b \\ c \end{pmatrix}
$$
 and let *B* be the point $\begin{pmatrix} d \\ e \\ f \end{pmatrix}$

Then:

$$
\overrightarrow{AB} = \begin{pmatrix} d-a \\ e-b \\ f-c \end{pmatrix} = k \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}
$$

Since *A* lies on $\mathbf{r} = \mathbf{i} - \mathbf{j} + \lambda(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$

$$
\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1+\lambda \\ -1+2\lambda \\ 3\lambda \end{pmatrix}
$$

Since *B* lies on $\mathbf{r} = 2\mathbf{i} + \mathbf{j} + \mathbf{k} + \mu(2\mathbf{i} - \mathbf{j} + \mathbf{k})$

$$
\begin{pmatrix} d \\ e \\ f \end{pmatrix} = \begin{pmatrix} 2+2\mu \\ 1-\mu \\ 1+\mu \end{pmatrix}
$$

Hence:

 $1+2\mu-\lambda$ (1) $2 - \mu - 2\lambda$ |= k| 1 $1+\mu-3\lambda$ \vert -1 *k* $\mu - \lambda$ $\mu - 2\lambda$ μ – 3λ $(1+2\mu - \lambda)$ (1) $\vert 2-\mu-2\lambda\vert=k\vert 1\vert$ $(1+\mu-3\lambda)$ (-1) $1 + 2\mu - \lambda = k$ (1) $2 - \mu - 2\lambda = k$ (2) $1 + \mu - 3\lambda = -k$ **(3)** Adding **(2)** and **(3)** gives: $3-5\lambda=0 \Rightarrow \lambda=\frac{3}{5}$ 5 $-5\lambda = 0 \Rightarrow \lambda =$ subtracting **(2)** from **(1)** gives: $-1 + 3\mu + \lambda = 0$ Substituting $\lambda = \frac{3}{5}$ 5 $\lambda = \frac{3}{4}$ gives: $1+3\mu+\frac{3}{2}=0 \Rightarrow \mu=\frac{2}{11}$ 5 15 $-1+3\mu+\frac{3}{2}=0 \Rightarrow \mu=$

Solution Bank

When
$$
\lambda = \frac{3}{5}
$$

\n
$$
\mathbf{r} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + \frac{3}{5} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}
$$
\n
$$
= \begin{pmatrix} \frac{8}{5} \\ \frac{1}{5} \\ \frac{9}{5} \end{pmatrix}
$$

Hence *A* is the point $\left(\frac{8}{5}, \frac{1}{5}, \frac{9}{5}\right)$ $\left(\frac{8}{5}, \frac{1}{5}, \frac{9}{5}\right)$

When
$$
\mu = \frac{2}{15}
$$

\n
$$
\mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \frac{2}{15} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}
$$
\n
$$
= \begin{pmatrix} \frac{34}{15} \\ \frac{13}{15} \\ \frac{17}{15} \end{pmatrix}
$$

Hence *B* is the point $= \left(\frac{34}{15}, \frac{13}{15}, \frac{17}{15}\right)$

6 a $\overrightarrow{AB} = (3i + j + 4k) - (i + 3j + 3k) = 2i - 2j + k$ $\overrightarrow{AC} = (2i + 4j + k) - (i + 3j + 3k) = i + j - 2k$

A vector normal to the plane ABC is the direction $\overrightarrow{AB} \times \overrightarrow{AC}$.

$$
\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} i & j & k \\ 2 & -2 & 1 \\ 1 & 1 & -2 \end{vmatrix} = 3i + 5j + 4k
$$

A unit vector normal to the plane is $\frac{1}{\sqrt{3^2 + 5^2 + 4^2}} (3i + 5j + 4k) = \frac{1}{\sqrt{50}} (3i + 5j + 4k)$

b Using $r.n = a.n$, with $n = 3i + 5j + 4k$ and $a = i + 3j + 3k$ (note a can be the position vector of any point on the plane), this gives a vector equation of the plane as: $r.(3i+5j+4k) = (i+3j+3k).(3i+5j+4k) = 3+15+12 = 30$ So $3x+5y+4z=30$ is a Cartesian equation of the plane.

INTERNATIONAL A LEVEL

Further Pure Maths 3

Solution Bank

6 c The perpendicular distance from the origin to a plane with equation $\mathbf{r} \cdot \mathbf{n} = k$ where **n** is a unit vector perpendicular to the plane is *k.*

So from part **b**, the vector equation of the plane is $r \cdot \frac{1}{\sqrt{50}}(3i+5j+4k) = \frac{30}{\sqrt{50}}$

So the perpendicular distance from the origin to the plane $=$ $\frac{30}{\sqrt{50}} = \frac{30\sqrt{50}}{50} = 3\sqrt{2}$

7 a Two non-parallel lines in the plane with vector equation
$$
r = i + sj + t(i - k)
$$
 are j and $i - k$

So a normal to the plane is $j \times i - k = |0 \t 1 \t 0$ $1 \t 0 \t -1$ *ijk* $j \times i - k = |0 \ 1 \ 0 | = -i - k$ −

As $i + k$ is parallel to $-i - k$, it must be is perpendicular to the plane.

b From part **b**, $\mathbf{n} = \frac{1}{\sqrt{2}} (\mathbf{i} + \mathbf{k})$ 2 $\mathbf{n} = \frac{1}{\sqrt{2}} (\mathbf{i} + \mathbf{k})$ is a unit vector perpendicular to the plane. Using $r.n = a.n$, with $a = i$, this gives a vector equation of the plane as

$$
r.\frac{1}{\sqrt{2}}(i+k) = (i).\frac{1}{\sqrt{2}}(i+k) = \frac{1}{\sqrt{2}}
$$

So as $\frac{1}{\sqrt{2}}(i+k)$ is a unit vector,

the perpendicular distance from the origin to the plane $=$ $\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$

c As $r \cdot \frac{1}{\sqrt{2}} (i+k) = \frac{1}{\sqrt{2}}$ 2 $\sqrt{2}$ $r \cdot \frac{1}{\sqrt{2}}(i+k) = \frac{1}{\sqrt{2}}$ is a vector equation of the plane

A Cartesian equation of the plane is $\frac{1}{\sqrt{2}} (x + z) = \frac{1}{\sqrt{2}}$, which simplifies to $x + z = 1$ 2 $\sqrt{2}$ $(x + z) = \frac{1}{\sqrt{2}}$, which simplifies to $x + z =$

8 a $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (5\mathbf{i} - 2\mathbf{j} + \mathbf{k}) - (\mathbf{i} + \mathbf{j} + \mathbf{k}) = 4\mathbf{i} - 3\mathbf{j}$ $\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = (3\mathbf{i} + 2\mathbf{j} + 6\mathbf{k}) - (\mathbf{i} + \mathbf{j} + \mathbf{k}) = 2\mathbf{i} + \mathbf{j} + 5\mathbf{k}$

A perpendicular vector to the plane is in direction $AB \times AC$

$$
\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & -3 & 0 \\ 2 & 1 & 5 \end{vmatrix} = -15\mathbf{i} - 20\mathbf{j} + 10\mathbf{k}
$$

- **b** The equation of the plane containing *A*, *B* and *C* is Using $\mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}$, with $\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$, this gives a vector equation of the plane as $r. (-15i - 20j + 10k) = (i + j + k). (-15i - 20j + 10k) = -15 - 20 + 10 = -25$ So a Cartesian equation of the plane is
- $-15x 20y + 10z = -25$, which simplifies to $3x + 4y 2z 5 = 0$

Solution Bank

8 c $\overrightarrow{AD} = \overrightarrow{OD} - \overrightarrow{OA} = (\mathbf{i} + 5\mathbf{j} + 6\mathbf{k}) - (\mathbf{i} + \mathbf{j} + \mathbf{k}) = 4\mathbf{j} + 5\mathbf{k}$ Volume of tetrahedron $ABCD = \frac{1}{6} \overrightarrow{AD} \cdot (\overrightarrow{AB} \times \overrightarrow{AC})$ $=\frac{1}{6}$ $|(4j+5k).(-15i-20j+10k)| = \frac{1}{6}|(-80+50)| = \frac{30}{6} = 5$

9 **a**
$$
\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = (2i - 3j) - (3i - 5j - k) = -i + 2j + k
$$

\n $\overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB} = (2i - 3j) - (-i + 5j + 7k) = 3i - 8j - 7k$
\n $\overrightarrow{AC} \times \overrightarrow{BC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 2 & 1 \\ 3 & -8 & -7 \end{vmatrix} = -6i - 4j + 2k$

b $\overrightarrow{AB} \times \overrightarrow{AC}$ is a normal to the plane Π and 3**i** − 5**j** − **k** is a point on the plane So an equation of the plane is

 $r \cdot (-6i - 4j + 2k) = (3i - 5j - k) \cdot (-6i - 4j + 2k) = -18 + 20 - 2 = 0$ This simplifies to $r \cdot (3i + 2j - k) = 0$

c As $3\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ is a normal to the plane, the perpendicular from the point $(2, 3, -2)$ to the plane has the equation

 $r = 2i + 3j - 2k + \lambda(3i + 2j - k)$

Using the result from part **b**, this meets the plane when $((2+3\lambda)i+(3+2\lambda)j+(-2-\lambda)k)$. $(3i+2j-k)=0$ \Rightarrow 3(2+3 λ) + 2(3+2 λ) - 1(-2 - λ) = 0 \Rightarrow 14 λ + 14 = 0 $\Rightarrow \lambda = -1$

Substitute $\lambda = -1$ into the equation of the line gives $r = 2i + 3j - 2k + (-1)(3i + 2j - k) = -i + j - k$ So the perpendicular from $(2, 3, -2)$ meets the plane at $(-1, 1, -1)$

10 a
$$
p \times q = (3i - j + 2k) \times (2i + j - k) = \begin{vmatrix} i & j & k \\ 3 & -1 & 2 \\ 2 & 1 & -1 \end{vmatrix} = -i + 7j + 5k
$$

b p×**q** is a normal to the plane and the point with position vector $3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ is on the plane, so an equation of the plane is $r \cdot (-i + 7j + 5k) = (3i - j + 2k) \cdot (-i + 7j + 5k) = -3 - 7 + 10 = 0$

So a Cartesian equation for the plane is $-x+7y+5z=0$

Solution Bank

10 c $(r-p) \times q = 0$ is one form of the vector equation of a line passing through the point with position vector **p** and parallel to the vector **q**. So the equation can also be written as $r = pq + \lambda q$, i.e. $r = 3i - j + 2k + \lambda(2i + j - k)$

This meets the plane $r \cdot (i + j + k) = 2$ when $((3+2\lambda)+(-1+\lambda)+(2-\lambda))$. $(i+j+k)=2$ \Rightarrow $(3+2\lambda) + (-1+\lambda) + (2-\lambda) = 2 \Rightarrow 2\lambda + 4 = 2 \Rightarrow \lambda = -1$ Substitute $\lambda = -1$ into the equation of the line gives $r = 3i - j + 2k + (-1)(2i + j - k) = i - 2j + 3k$ So the coordinates of point *T* are $(1, -2, 3)$

11 a Let the respective normal to each plane be \mathbf{n}_1 and \mathbf{n}_2 , then

 $n_1 = 2i + 2j - k$ and $n_2 = i - 2j$

Let the acute angle between the two planes be θ , then θ is also the angle between the respective normal to each plane, so

$$
\cos \theta = \left| \frac{n_1 \cdot n_2}{\|n_1\| \, |n_2\|} \right| = \frac{|2 \times 1 - 2 \times 2|}{\sqrt{2^2 + 2^2 + (-1)^2} \sqrt{1^2 + (-2)^2}} = \frac{2}{3\sqrt{5}} = \frac{2\sqrt{5}}{15}
$$

\n
$$
\Rightarrow \theta = 72.7^\circ = 73^\circ \text{ (to the nearest degree)}
$$

b The direction of the line of intersection is perpendicular to the normal of each plane.

Hence the direction is
$$
\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 2 & -1 \\ 1 & -2 & 0 \end{vmatrix} = -2\mathbf{i} - \mathbf{j} - 6\mathbf{k}
$$

Any scalar multiple of this vector is also in the direction of the line of intersection, so simplify by multiplying by -1 to get $2\mathbf{i} + \mathbf{j} + 6\mathbf{k}$

Find a point on the line by setting $y = 0$ and solving the Cartesian equations of the two planes.

$$
2x+2y-z=9
$$
 (1)

$$
x-2y=7
$$
 (2)

Substituting for y in equation (2) gives: $x = 7$

Substituting for x and y in equation (1) gives: $2 \times 7 - z = 9 \implies z = 5$

So $7i + 5k$ is the position vector of a point on the line of intersection

A line passing through a point with position vector **a** and parallel to vector **b** has the vector equation $\mathbf{r} \times \mathbf{b} = \mathbf{a} \times \mathbf{b}$, so an equation of the line of intersection is

$$
\mathbf{r} \times (2\mathbf{i} + \mathbf{j} + 6\mathbf{k}) = (7\mathbf{i} + 5\mathbf{k}) \times (2\mathbf{i} + \mathbf{j} + 6\mathbf{k}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 7 & 0 & 5 \\ 2 & 1 & 6 \end{vmatrix} = -5\mathbf{i} - 32\mathbf{j} + 7\mathbf{k}
$$

So the equation is $\mathbf{r} \times (2\mathbf{i} + \mathbf{j} + 6\mathbf{k}) = -5\mathbf{i} - 32\mathbf{j} + 7\mathbf{k}$

12 a
$$
\overrightarrow{PS} = \overrightarrow{OS} - \overrightarrow{OP}
$$

= i + j + 4k - 2i
= -i + j + 4k

Solution Bank

$$
12 \mathbf{b} \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} \begin{pmatrix} 0 \\ -4 \\ 1 \end{pmatrix} = 0 - 4 + 4 = 0
$$

therefore, \overrightarrow{OS} and $=-4j+k$ are perpendicular

$$
\begin{pmatrix} -1 \\ 1 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ -4 \\ 1 \end{pmatrix} = 0 - 4 + 4 = 0
$$

therefore, \overrightarrow{PS} and $=-4j+k$ are perpendicular

c
$$
\overrightarrow{SQ} = \overrightarrow{OQ} - \overrightarrow{OS}
$$

\n
$$
= 2\mathbf{i} + 2\mathbf{j} - (\mathbf{i} + \mathbf{j} + 4\mathbf{k})
$$
\n
$$
= \mathbf{i} + \mathbf{j} - 4\mathbf{k}
$$
\nAs $-4\mathbf{j} + \mathbf{k}$ is normal to the plane *OSP*,
\n
$$
\sin \theta = \frac{(\mathbf{i} + \mathbf{j} - 4\mathbf{k}) \cdot (-4\mathbf{j} + \mathbf{k})}{|\mathbf{i} + \mathbf{j} - 4\mathbf{k}| \times |-4\mathbf{j} + \mathbf{k}|}
$$
\n
$$
= \frac{-4 - 4}{\sqrt{1^2 + 1^2 + (-4)^2} \times \sqrt{(-4)^2 + 1^2}}
$$
\n
$$
= \frac{-8}{\sqrt{18} \times \sqrt{17}}
$$
\n
$$
\theta = -27.21...
$$

Therefore, the acute angle is 27° (to the nearest degree)

13 a The normal to the plane Π is in the direction

$$
(4i + j + 2k) \times (3i + 2j - k) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & 1 & 2 \\ 3 & 2 & -1 \end{vmatrix} = -5i + 10j + 5k
$$

The line *L* is in the direction $(2i + 3j - 4k)$

Finding the scalar product of the direction of the normal to the plane and the direction of the line $(-5i+10j+5k)$. $(2i+3j-4k) = -10+30-20=0$

This means that the line *L* is perpendicular to the normal to the plane, so the line *L* is parallel to the plane Π.

Solution Bank

13 b The line *L* passes through point $(2, 1, -3)$ The perpendicular to plane Π through the point $(2, 1, -3)$ has a vector equation $r = 2i + j - 3k + \lambda(-5i + 10j + 5k)$ As the normal to the plane is $-5i + 10j + 5k$ and $i + 3j + 4k$ is the position vector of a point on the plane, the equation of the plane may be written as $r. (-5i + 10 j + 5k) = (i + 3 j + 4k). (-5i + 10 j + 5k) = -5 + 30 + 20 = 45$ So the perpendicular to the plane Π from $(2, 1, -3)$ meets the plane when $((2-5\lambda)i+(1+10\lambda)j+(-3+5\lambda)k)$. $(-5+10j+5k) = 45$ \Rightarrow 150 λ = 60 \Rightarrow λ = $\frac{2}{5}$ $\Rightarrow -10 + 25\lambda + 10 + 100\lambda - 15 + 25\lambda = 45$

Substituting $\lambda = \frac{2}{5}$ into the equation of the perpendicular to plane Π through the point (2, 1, -3) gives $r = 5j - k$, so the perpendicular to Π from (2, 1, –3) meets the plane at (0, 5, –1). As the line is parallel to the plane, the shortest distance from L to Π is the distance between these points, i.e.

$$
\sqrt{(2-0)^2 + (1-5)^2 + (-3-(-1))^2} = \sqrt{4+16+4} = \sqrt{24} = 2\sqrt{6}
$$

Alternatively, note that as *L* is parallel to the plane Π, the shortest distance between *L* and the plane will also be the shortest distance between *L* and any line L_1 on the plane that is non-parallel with *L*. These two lines are skew.

Write the equation of *L* as $\mathbf{r} = \mathbf{a} + t\mathbf{b}$, where $\mathbf{a} = 2\mathbf{i} + \mathbf{j} - 3\mathbf{k}$ and $\mathbf{b} = 2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$ And L_1 as $\mathbf{r} = \mathbf{c} + s\mathbf{d}$, where $\mathbf{c} = \mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$, a point on the plane, and $\mathbf{d} = 4\mathbf{i} + \mathbf{j} + 2\mathbf{k}$, a direction on the plane

$$
b \times d = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 3 & -4 \\ 4 & 1 & 2 \end{vmatrix} = 10i - 20j - 10k
$$

Using the result for the shortest distance between two skew lines

$$
\text{Shortest distance} = \left| \frac{(\mathbf{a} - \mathbf{c})(\mathbf{b} \times \mathbf{d})}{|(\mathbf{b} \times \mathbf{d})|} \right| = \left| \frac{(\mathbf{i} - 2\mathbf{j} - 7\mathbf{k})(10\mathbf{i} - 20\mathbf{j} - 10\mathbf{k})}{\sqrt{10^2 + (-20)^2 + (-10)^2}} \right|
$$
\n
$$
= \frac{10 + 40 + 70}{\sqrt{600}} = \frac{120}{10\sqrt{6}} = \frac{12}{\sqrt{6}} = 2\sqrt{6}
$$

14 a $\Pi_1 : \mathbf{r} \cdot (2\mathbf{i} - \mathbf{j} + \mathbf{k}) = 0$, $\Pi_2 : \mathbf{r} \cdot (\mathbf{i} + 5\mathbf{j} + 3\mathbf{k}) = 1$ and *A* is the point (2, -2, 3) $\Pi_2 : x + 5y + 3k = 1$ Substituting $(2, -2, 3)$ gives: $2+5(-2)+3(3)=1$ $2 - 10 + 9 = 1$

 $1 = 1$ Therefore, $(2, -2, 3)$ lies on Π ,

Solution Bank

14 b
$$
\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 5 \\ 3 \end{pmatrix} = 2 - 5 + 3 = 0
$$

therefore, the planes are perpendicular

$$
\mathbf{c} \quad \mathbf{r} = \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}
$$

\n
$$
\mathbf{d} \quad \mathbf{r} = \begin{pmatrix} 2+2\lambda \\ -2-\lambda \\ 3+\lambda \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}
$$

\n
$$
= 2(2+2\lambda) - 1(-2-\lambda) + 1(3+\lambda)
$$

\n
$$
= 6\lambda + 9
$$

\n
$$
6\lambda + 9 = 0 \Rightarrow \lambda = -\frac{3}{2}
$$

\nSubstituting $\lambda = -\frac{3}{2}$ into $\mathbf{r} = \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$ gives:
\n
$$
\mathbf{r} = \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix} - \frac{3}{2} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}
$$

\n
$$
= \begin{pmatrix} -1 \\ -\frac{1}{2} \\ \frac{3}{2} \end{pmatrix}
$$

Therefore, they meet at the point $\left(-1, -\frac{1}{2}, \frac{3}{2}\right)$

e The unit vector parallel to

$$
2\mathbf{i} - \mathbf{j} + \mathbf{k} = \frac{1}{|2\mathbf{i} - \mathbf{j} + \mathbf{k}|} (2\mathbf{i} - \mathbf{j} + \mathbf{k})
$$

$$
= \frac{1}{\sqrt{6}} (2\mathbf{i} - \mathbf{j} + \mathbf{k})
$$

The plane Π' passing through $(2, -2, 3)$ has equation:

$$
\mathbf{r} \cdot \frac{1}{\sqrt{6}} (2\mathbf{i} - \mathbf{j} + \mathbf{k}) = (2\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) \frac{1}{\sqrt{6}} (2\mathbf{i} - \mathbf{j} + \mathbf{k})
$$

$$
= \frac{1}{\sqrt{6}} (4 + 2 + 3)
$$

$$
= \frac{3\sqrt{6}}{2}
$$

INTERNATIONAL A LEVEL

Further Pure Maths 3

Solution Bank

- **14 f** $\bf{r} \cdot (2i j + k) = (2i 2j + 3k) \cdot (2i j + k)$ $=4+2+3$ $\mathbf{r} \cdot (2\mathbf{i} - \mathbf{j} + \mathbf{k}) = 9$
- **15 a** A normal to the plane is $2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$ so the line *l* is parallel to this vector and it passes through the point with position vector $\mathbf{i} + 2\mathbf{j} + \mathbf{k}$, hence a vector equation of the line is $r = i + 2j + k + \lambda(2i + j + 3k)$
	- **b** From the vector equation, the coordinates of a point on *l* are $(1+2\lambda, 2+\lambda, 1+3\lambda)$ So the line *l* meets the plane Π when $2(1+2\lambda) + (2+\lambda) + 3(1+3\lambda) = 21$ \Rightarrow 14 λ + 7 = 21 \Rightarrow λ = 1 Substitute $\lambda = 1$ into the equation of the line *l* gives $r = 3i + 3j + 4k$ So *M* has coordinates (3, 3, 4)
	- **c** $OP \times OM = (i + 2j + k) \times (3i + 3j + 4k) = |1 \ 2 \ 1| = 5i j 3$ 334 $OP \times OM = (i + 2j + k) \times (3i + 3j + 4k) = |1 \quad 2 \quad 1| = 5i - j - 3k$ **i jk**
	- **d** Let θ be the acute angle between the vectors \overrightarrow{OP} and \overrightarrow{OM} Then, by simple geometry, the distance *d* from *P* to the line *OM* is $|\overrightarrow{OP}| \sin \theta$

From the definition of the vector product sin *OP OM OP||OM* $\theta = \frac{\overline{OP} \times}{\overline{OP}}$ \Rightarrow \Rightarrow $2(1)^2(1)^2$ 2, 2^2 , 4^2 So $d = |OP| \sin$ $5^2 + (-1)^2 + (-3)^2$ $\sqrt{35}$ $=\frac{\sqrt{5^2+(-1)^2+(-3)^2}}{\sqrt{3^2+3^2+4^2}}=\frac{\sqrt{35}}{\sqrt{34}}$ OP || $OP \times OM$ | | $OP \times OM$ $d = |OP$ *OP* | *OM* | *OM* $=|\overrightarrow{OP}|\sin\theta=\frac{|\overrightarrow{OP}||\overrightarrow{OP}\times\overrightarrow{OM}|}{\sqrt{|\overrightarrow{OP}|\times\overrightarrow{OM}|}}=\frac{|\overrightarrow{OP}\times\overrightarrow{OM}|}{\sqrt{|\overrightarrow{Q}\times\overrightarrow{OM}|}}$

Solution Bank

15 e This sketch shows the problem

$$
O\left(\frac{M}{\sum_{i=1}^{N}M_{i}}\right)
$$

$$
\overrightarrow{PM} = (3\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}) - (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k}
$$

Therefore $\overrightarrow{MQ} = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$
And $\overrightarrow{OQ} = \overrightarrow{OM} + \overrightarrow{MQ} = (3\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}) + (2\mathbf{i} + \mathbf{j} + 3\mathbf{k}) = 5\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}$
So *Q* has coordinates (5, 4, 7)

16 a l_1 : $\mathbf{r} = \mathbf{i} - \mathbf{j} + \lambda(2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ and l_2 : $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k} + \mu(-3\mathbf{i} + 4\mathbf{k})$ When the lines intersect: $1+2\lambda$ $(1-3$ $1 + \lambda$ |=| 2 2 λ) (2+4 λ) $(1-3\mu$ λ λ) $(2+4\mu$ $(1+2\lambda)$ $(1-3\mu)$ $\begin{vmatrix} -1 + \lambda \end{vmatrix} = \begin{vmatrix} 2 \end{vmatrix}$ $\left(-2\lambda \right) \left(2+4\mu \right)$ $-1 + \lambda = 2 \implies \lambda = 3$ $1+2(3) = 1-3\mu \Rightarrow \mu = -2$ (3) (3) (-2) (-2) $1+2(3)$ $(1-3(-2)$ $1+3$ |=| 2 $2(3)$ \int $2+4(-2)$ $\begin{pmatrix} 1+2(3) \\ -1+3 \end{pmatrix} = \begin{pmatrix} 1-3(-2) \\ 2 \end{pmatrix}$ $\left(-2(3)$) $\left(2+4(-2) \right)$ 7 (7 2 $=$ 2 -6 -6 $\begin{pmatrix} 7 \\ 2 \\ -6 \end{pmatrix} = \begin{pmatrix} 7 \\ 2 \\ -6 \end{pmatrix}$

Therefore, the lines intersect

b From part **a** $r = 7i + 2j - 6k$

Solution Bank

P Pearson

Therefore, the acute angle is 21.03... and $\cos \theta = \frac{14}{16}$ 15 $\theta =$

d The vector equation of the plane will be of the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{v} + \mu \mathbf{w}$ where **a** lies on the plane, and **v** and **w** are vectors within it.

Take $\mathbf{a} = \mathbf{i} - \mathbf{j}$ from the equation of l_1 Take $\mathbf{v} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$ also from the equation of l_1 Take $\mathbf{w} = -3\mathbf{i} + 4\mathbf{k}$ from the equation of l_2

Then a vector equation of the line is $\mathbf{r} = \mathbf{i} - \mathbf{j} + \lambda(2\mathbf{i} + \mathbf{j} - \mathbf{k}) + \mu(-3\mathbf{i} + 4\mathbf{k})$

17 Let the position vector of point *C* relative to the origin be $\mathbf{c} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$

Then the volume of the tetrahedron is given by $\frac{1}{\epsilon} | c.(a \times b) |$ 6 $c.(a \times b)$

$$
\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 5 & 2 & 0 \\ 2 & -1 & -3 \end{vmatrix} = -6\mathbf{i} + 15\mathbf{j} - 9\mathbf{k}
$$

This gives

$$
\frac{1}{6} |\mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})| = \frac{1}{6} |(\mathbf{x} \mathbf{i} + \mathbf{y} \mathbf{j} + \mathbf{z} \mathbf{k}) \cdot (-6\mathbf{i} + 15\mathbf{j} - 9\mathbf{k})| = \frac{1}{6} |-6x + 15y - 9z| = \frac{1}{2} |-2x + 5y - 3z|
$$

So if the volume is 5 m³, then the locus of admissible points is

$$
\frac{1}{2} |-2x + 5y - 3z| = 5 \Rightarrow |-2x + 5y - 3z| = 10
$$

So Cartesian equations satisfying this equation are $-2x+5y-3z = 10 \implies 2x-5y+3x+10 = 0$ and $2x - 5y + 3z = 10 \implies 2x - 5y + 3x - 10 = 0$

18 a Equation of L_1 is $\mathbf{r} = 3\mathbf{i} - 3\mathbf{j} + 2\mathbf{k} + s(\mathbf{j} + 2\mathbf{k})$ When $s = 2$, $\mathbf{r} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$, so *P* lies on L_1

Equation of L_2 is $\mathbf{r} = 8\mathbf{i} + 3\mathbf{j} + t(5\mathbf{i} + 4\mathbf{j} - 2\mathbf{k})$ When $t = -1$, $\mathbf{r} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$, so *P* lies on L_2

b
$$
b_1 \times b_2 = \begin{vmatrix} i & j & k \\ 0 & 1 & 2 \\ 5 & 4 & -2 \end{vmatrix} = -10i + 10j - 5k
$$

INTERNATIONAL A LEVEL

Further Pure Maths 3

Solution Bank

18 c The normal to the plane is in direction of $b_1 \times b_2$. So $-2i + 2j - k$ is a normal to the plane. Using $\bf{r.n} = \bf{a.n}$, with $\bf{n} = 3\bf{i} + \bf{j} - \bf{k}$ and $\bf{a} = 3\bf{i} - 3\bf{j} - 2\bf{k}$ (note \bf{a} can be the position vector of any point on the plane), this gives a vector equation of the plane as: $\mathbf{r} \cdot (-2\mathbf{i} + 2\mathbf{j} - \mathbf{k}) = (3\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}) \cdot (-2\mathbf{i} + 2\mathbf{j} - \mathbf{k}) = -6 - 6 + 2 = -10$ So $2x - 2y + z = 10$ is a Cartesian equation of the plane.

d
$$
\overline{A_1P} = (3i - j + 2k) - (3i - 3j - 2k) = 2j + 4k = 2b_1
$$

\n $\overline{A_2P} = (3i - j + 2k) - (8i + 3j) = (-5i - 4j + 2k) = -b_2$
\nArea of triangle $PA_1A_2 = \frac{1}{2} |\overline{A_1P} \times \overline{A_2P}| = \frac{1}{2} |2\mathbf{b}_1 \times -\mathbf{b}_2|$
\n $= |\mathbf{b}_1 \times \mathbf{b}_2| = |-10\mathbf{i} + 10\mathbf{j} - 5\mathbf{k}|$ from part **b**
\n $= \sqrt{(-10)^2 + (10)^2 + (-5)^2}$
\n $= \sqrt{225} = 15$

19 a
$$
A: a(5\mathbf{i} - \mathbf{j} - 3\mathbf{k})
$$
, $B: a(-4\mathbf{i} + 4\mathbf{j} - \mathbf{k})$ and $C: a(5\mathbf{i} - 2\mathbf{j} + 11\mathbf{k})$
 $\overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB}$

$$
= a \begin{pmatrix} 5 \\ -2 \\ 11 \end{pmatrix} - a \begin{pmatrix} -4 \\ 4 \\ 1 \end{pmatrix}
$$

$$
= a \begin{pmatrix} 9 \\ -6 \\ 12 \end{pmatrix}
$$

Therefore:

$$
\mathbf{r} = a \begin{pmatrix} -4 \\ 4 \\ -1 \end{pmatrix} + \lambda a \begin{pmatrix} 9 \\ -6 \\ 12 \end{pmatrix}
$$

b *OAB* contains *O*:(0, 0, 0), *A*: *a*(5, −1, −3) and *B*: *a*(−4, 4, −1) Hence:

$$
\mathbf{r} = a \begin{pmatrix} 5 \\ -1 \\ -3 \end{pmatrix} + \lambda a \begin{pmatrix} 5 \\ -1 \\ -3 \end{pmatrix} + \mu a \begin{pmatrix} -4 \\ 4 \\ -1 \end{pmatrix}
$$

Solution Bank

19 c
$$
\cos \theta = \frac{(5\mathbf{i} - \mathbf{j} - 3\mathbf{k}) \cdot (-4\mathbf{i} + 4\mathbf{j} - \mathbf{k})}{|5\mathbf{i} - \mathbf{j} - 3\mathbf{k}| \times |-4\mathbf{i} + 4\mathbf{j} - \mathbf{k}|}
$$

\n
$$
= \frac{-20 - 4 + 3}{\sqrt{5^2 + (-1)^2 + (-3)^2} \times \sqrt{(-4)^2 + 4^2 + (-1)^2}}
$$
\n
$$
= \frac{-21}{\sqrt{35}\sqrt{33}}
$$
\n $\theta = 128.16...$

Therefore, the acute angle is 51.83... and $\cos \theta = \frac{21}{\sqrt{1-\theta}}$ $35\sqrt{33}$ $\theta =$

d
$$
\overrightarrow{BC} : \mathbf{r} = a \begin{pmatrix} -4 \\ 4 \\ -1 \end{pmatrix} + \lambda a \begin{pmatrix} 9 \\ -6 \\ 12 \end{pmatrix}
$$
 and A is the point $a(5, -1, -3)$
\n
$$
\mathbf{r} \cdot a \begin{pmatrix} 9 \\ -6 \\ 12 \end{pmatrix} = a \begin{pmatrix} 5 \\ -1 \\ -3 \end{pmatrix} a \begin{pmatrix} 9 \\ -6 \\ 12 \end{pmatrix}
$$
\n
$$
a(9x - 6y + 12z) = a^2 (45 + 6 - 36)
$$
\n
$$
9x - 6y + 12z = 15a
$$
\n
$$
3x - 2y + 4z = 5a
$$
\n**e** $\overrightarrow{BC} : \mathbf{r} = a \begin{pmatrix} -4 \\ 4 \\ -1 \end{pmatrix} + \lambda a \begin{pmatrix} 9 \\ -6 \\ 12 \end{pmatrix}$

Written in Cartesian form this is:

$$
\frac{x+4a}{9} = \frac{y-4a}{-6} = \frac{z+a}{12} = \lambda
$$

20 a
$$
\overrightarrow{BC} = (2i + 3j + 3k) - (i + 2j + 3k) = i + j
$$

\n
$$
\overrightarrow{BD} = (3i + 2j + 4k) - (i + 2j + 3k) = 2i + k
$$

\nSo
$$
\overrightarrow{BC} \times \overrightarrow{BD} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{vmatrix} = i - j - 2k
$$
 which is normal to the plane *BCD*

Using $\mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}$, with $\mathbf{a} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$, this gives a vector equation of the plane *BCD* as $r.(i - j - 2k) = (i + 2j + 3k).(i - j - 2k) = 1 - 2 - 6 = -7$ This may be written in Cartesian form as $x - y - 2z + 7 = 0$

b Let α be the angle between *BC* and the plane $x + 2y + 3z = 4$ and θ be the acute angle between *BC* and the normal to this plane, which is $i + 2j + 3k$.

Then
$$
\alpha = 90 - \theta \Rightarrow \sin \alpha = \cos \theta
$$

So $\sin \alpha = \cos \theta = \frac{|(i+j)(i+2j+3k)|}{\sqrt{1^2 + 1^2} \sqrt{1^2 + 2^2 + 3^2}} = \frac{3}{\sqrt{2} \sqrt{14}} = 0.567$ (3 s.f.)

Solution Bank

20 c Let *A* have coordinates (x, y, z)

Then $\overrightarrow{AC} = (2-x)\mathbf{i} + (3-y)\mathbf{j} + (3-z)\mathbf{k}$ and $\overrightarrow{AD} = (3-x)\mathbf{i} + (2-y)\mathbf{j} + (4-z)\mathbf{k}$

As *AC* is perpendicular to *BD*, AC *,* $BD = 0$ So $2(2-x)+(3-z)=0$ \Rightarrow 2x + z = 7 (1)

As *AD* is perpendicular to *BC*, $\overrightarrow{AD} \cdot \overrightarrow{BC} = 0$ So $(3-x)+(2-y)=0$ \Rightarrow $x + y = 5$ (2)

As
$$
AB = \sqrt{26}
$$

\n $(x-1)^2 + (y-2)^2 + (z-3)^2 = 26$ (3)

Substituting $z = 7 - 2x$ and $y = 5 - x$ from equation **(1)** and **(2)** into equation **(3)** gives

$$
(x-1)2 + (3-x)2 + (4-2x)2 = 26
$$

x²-2x+1+9-6x+x²+16-16x+4x² = 26
6x²-24x = 0
x(x-4) = 0
 \Rightarrow x = 0 or 4
When x = 0, y = 5 and z = 7
When x = 4, y = 1 and z = -1

The two possible positions are $(0, 5, 7)$ and $(4, 1, -1)$

Challenge

Two direction vectors in the plane given by $\mathbf{r}_1 = p\mathbf{i} - r\mathbf{k}$ and $\mathbf{r}_2 = q\mathbf{j} - r\mathbf{k}$ Hence a normal to the plane is given by

$$
\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ p & 0 & -r \\ 0 & q & -r \end{vmatrix} = qr\mathbf{i} + pr\mathbf{j} + pq\mathbf{k}
$$

Using $\bf{r.n} = \bf{a.n}$, with $\bf{n} = qr\bf{i} + pr\bf{j} + pq\bf{k}$ and $\bf{a} = p\bf{i}$, a point on the plane, this gives a vector equation of the plane as:

 $\mathbf{r}.q\dot{r} + p\dot{r} + pq\mathbf{k} = p\mathbf{i}.(q\dot{r} + p\dot{r}) + pq\mathbf{k}) = pqr$

If *d* is the length of the perpendicular from the origin to the plane then \mathbf{r} . $|n|$ $\mathbf{r.}$ $\frac{1}{\mathbf{n}}$ = *d* **n**

So
$$
d = \frac{pqr}{\sqrt{q^2r^2 + p^2r^2 + p^2q^2}}
$$

\n $\Rightarrow d^2 = \frac{p^2q^2r^2}{q^2r^2 + p^2r^2 + p^2q^2}$
\n $\Rightarrow \frac{1}{d^2} = \frac{q^2r^2 + p^2r^2 + p^2q^2}{p^2q^2r^2} = \frac{1}{p^2} + \frac{1}{q^2} + \frac{1}{r^2}$