Solution Bank

Exercise 5F

1 a
$$
l_1
$$
 is the line $\mathbf{r} = \mathbf{i} + 3\mathbf{j} + \lambda(\mathbf{i} - \mathbf{j} + 5\mathbf{k})$

$$
l_2 \text{ is the line } \mathbf{r} = -\mathbf{i} - 3\mathbf{j} + 2\mathbf{k} + \mu(\mathbf{i} + \mathbf{j} + 2\mathbf{k})
$$
\n
$$
\begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 5 \end{pmatrix} = \begin{pmatrix} -1 \\ -3 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}
$$
\n
$$
1 + \lambda = -1 + \mu \quad (1)
$$
\n
$$
3 - \lambda = -3 + \mu \quad (2)
$$
\n
$$
5\lambda = 2 + 2\mu \quad (3)
$$
\nAdding (1) and (2) gives:
\n
$$
4 = -4 + 2\mu \Rightarrow \mu = 4
$$
\nSubstituting $\mu = 4$ into (1) gives:
\n
$$
1 + \lambda = -1 + 4 \Rightarrow \lambda = 2
$$
\nSubstituting $\lambda = 2$ and $\mu = 4$ into (3) gives:
\n
$$
5(2) = 2 + 2(4)
$$
\n
$$
10 = 10
$$
\nSubstituting $\lambda = 2$ into $\mathbf{r} = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 5 \end{pmatrix}$ gives:
\n
$$
\begin{pmatrix} 1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 5 \end{pmatrix}
$$
 gives:

$$
\mathbf{r} = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ -1 \\ 5 \end{pmatrix}
$$

$$
= \begin{pmatrix} 3 \\ 1 \\ 10 \end{pmatrix}
$$

Therefore, l_1 and l_2 intersect at the point $(3, 1, 10)$

Solution Bank

1 b l_1 is the line $\mathbf{r} = 3\mathbf{i} + 2\mathbf{j} + \mathbf{k} + \lambda(\mathbf{i} + \mathbf{j} + 2\mathbf{k})$

*l*₂ is the line $\mathbf{r} = 4\mathbf{i} + 3\mathbf{j} + \mu(-\mathbf{i} + \mathbf{j} - \mathbf{k})$ 3) (1) (4) (-1) $2 \mid + \lambda \mid 1 \mid = \mid 3 \mid + \mu \mid 1$ 1) $\begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$ $\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$ (1) (2) (0) (-1) $3 + \lambda = 4 - \mu$ (1) $2 + \lambda = 3 + \mu$ (2) $1+2\lambda = -\mu$ (3) Adding **(1)** and **(2)** gives: $5+2\lambda = 7 \implies \lambda = 1$ Substituting $\lambda = 1$ into **(1)** gives: $3+1 = 4 - \mu \Rightarrow \mu = 0$ Substituting $\lambda = 1$ and $\mu = 0$ into (3) gives: $1 + 2(1) = 0$ $3 \neq 0$ Therefore, *l*¹ and *l*² do not intersect.

INTERNATIONAL A LEVEL

Further Pure Maths 3

Solution Bank

1 c l_1 is the line $r = i + 3j + 5j + \lambda(2i + 3j + k)$

$$
l_2 \text{ is the line } \mathbf{r} = \mathbf{i} + \frac{5}{2} \mathbf{j} + \frac{5}{2} \mathbf{k} + \mu (\mathbf{i} + \mathbf{j} - 2\mathbf{k})
$$
\n
$$
\begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 5/2 \\ 5/2 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}
$$
\n
$$
1 + 2\lambda = 1 + \mu \quad (1)
$$
\n
$$
3 + 3\lambda = \frac{5}{2} + \mu \quad (2)
$$
\n
$$
5 + \lambda = \frac{5}{2} - 2\mu \quad (3)
$$
\nSubtracting (1) from (2) gives:
\n
$$
2 + \lambda = \frac{3}{2} \Rightarrow \lambda = -\frac{1}{2}
$$
\nSubstituting $\lambda = -\frac{1}{2}$ into (1) gives:
\n
$$
1 + 2\left(-\frac{1}{2}\right) = 1 + \mu \Rightarrow \mu = -1
$$
\nSubstituting $\lambda = -\frac{1}{2}$ and $\mu = -1$ into (3) gives:
\n
$$
5 - \frac{1}{2} = \frac{5}{2} - 2(-1)
$$
\n
$$
\frac{9}{2} = \frac{9}{2}
$$
\nSubstituting $\lambda = -\frac{1}{2}$ into $\mathbf{r} = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ gives:
\n
$$
\mathbf{r} = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}
$$
\n
$$
= \begin{pmatrix} 0 \\ 3/2 \\ 5/2 \end{pmatrix}
$$

Therefore, l_1 and l_2 intersect at the point $\left(0, \frac{3}{2}, \frac{9}{2}\right)$

Solution Bank

2 a $l: \mathbf{r} = \mathbf{i} + \mathbf{j} + \mathbf{k} + \lambda(-2\mathbf{i} + \mathbf{j} - 4\mathbf{k})$

 $\Pi : \mathbf{r} \cdot (3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}) = 16$

If the line and the plane meet then:

$$
\begin{pmatrix} 1-2\lambda \\ 1+\lambda \\ 1-4\lambda \end{pmatrix} \begin{pmatrix} 3 \\ -4 \\ 2 \end{pmatrix} = 16
$$

3(1-2\lambda)-4(1+\lambda)+2(1-4\lambda) = 16
3-6\lambda-4-4\lambda-2-8\lambda = 16
1-18\lambda = 16
18\lambda = -15

$$
\lambda = -\frac{5}{6}
$$

Therefore, the line and the plane meet at the point:

$$
\left(\begin{array}{c}\n1-2\left(-\frac{5}{6}\right) \\
1+\left(-\frac{5}{6}\right) \\
1-4\left(-\frac{5}{6}\right)\n\end{array}\right) = \left(\begin{array}{c}\n8 \\
\frac{1}{3} \\
\frac{13}{6} \\
3\n\end{array}\right)
$$

b
$$
l: \mathbf{r} = 2\mathbf{i} + 3\mathbf{j} - 2\mathbf{k} + \lambda(\mathbf{i} + \mathbf{j} + \mathbf{k})
$$

$$
\Pi: \mathbf{r}.(\mathbf{i} + \mathbf{j} - 2\mathbf{k}) = 1
$$

If the line and the plane meet then:

$$
\begin{pmatrix} 2+\lambda \\ 3+\lambda \\ -2+\lambda \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} = 1
$$

$$
(2+\lambda)+(3+\lambda)-2(-2+\lambda)=1
$$

$$
2+\lambda+3+\lambda+4-2\lambda=1
$$

$$
9=1
$$

Therefore, the line and the plane do not meet.

Solution Bank

2 c
$$
l: \mathbf{r} = \mathbf{i} + \mathbf{j} + \mathbf{k} + \lambda(2\mathbf{j} - 2\mathbf{k})
$$

 Π : $\mathbf{r}.(3\mathbf{i} - \mathbf{j} - 6\mathbf{k}) = 1$

If the line and the plane meet then:

$$
\begin{pmatrix} 1 \ 1+2\lambda \ 1-2\lambda \end{pmatrix} \begin{pmatrix} 3 \ -1 \ -6 \end{pmatrix} = 1
$$

3-(1+2\lambda)-6(1-2\lambda)=1
3-1-2\lambda-6+12\lambda=1
-4+10\lambda=1
10\lambda = 5

$$
\lambda = \frac{1}{2}
$$

Therefore, the line and the plane meet at the point:

$$
\begin{pmatrix} 1 \\ 1+2\left(\frac{1}{2}\right) \\ 1-2\left(\frac{1}{2}\right) \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}
$$

Solution Bank

3 a $3i - 2j - k$ is normal to Π_1 and $4i - j - 2k$ is normal to Π_2

As the line is perpendicular to both normal vectors, the direction vector of the line is given by

$$
\begin{vmatrix} i & j & k \\ 3 & -2 & -1 \\ 4 & -1 & -2 \end{vmatrix} = 3i + 2j + 5k
$$

The Cartesian equation of both planes are:

$$
\Pi_1: 3x - 2y - z = 5 \tag{1}
$$
\n
$$
\Pi_2: 4x - y - 2z = 5 \tag{2}
$$

Setting $y = 0$ and then multiplying equation **(1)** by 2 and subtracting equation **(2)** gives $2x = 5 \implies x = \frac{5}{2}$

Substituting for x in equation (2) gives

 $4 \times \frac{5}{2} - 2z = 5 \implies z = \frac{5}{2}$

So $\frac{5}{2}$ **i** + $\frac{5}{2}$ **k** is a point on the line

An equation passing though a point with position vector **a** and parallel to vector **b** has the vector equation $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$, so the equation of the line of intersection of the two planes is $\mathbf{r} = \frac{5}{2}\mathbf{i} + \frac{5}{2}\mathbf{k} + \lambda(3\mathbf{i} + 2\mathbf{j} + 5\mathbf{k})$

b 5**i** - **j** − 2**k** is normal to Π_1 and 16**i** − 5**j** − 4**k** is normal to Π_2

As the line is perpendicular to both normal vectors, the direction vector of the line is given by

$$
\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 5 & -1 & -2 \\ 16 & -5 & -4 \end{vmatrix} = -6\mathbf{i} - 12\mathbf{j} - 9\mathbf{k}
$$

Dividing by the scalar –3 to get this vector in a simple form, gives the direction of the line as $2\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}$

The Cartesian equation of both planes are:

$$
\Pi_1: 5x - y - 2z = 16 \tag{1}
$$
\n
$$
\Pi_2: 16x - 5y - 4z = 53 \tag{2}
$$

Setting $z = 0$ and then multiplying equation **(1)** by 5 and subtracting equation **(2)** gives $(25-16)x = 80-53 \implies 9x = 27 \implies x = 3$

Substituting for x in equation (1) gives

 $5 \times 3 - y = 16 \Rightarrow y = -1$

So $3\mathbf{i} - \mathbf{j}$ is a point on the line

The equation of the line of intersection of the two planes is

 $r = 3i - j + \lambda(2i + 4j + 3k)$

Solution Bank

3 c $\mathbf{i} - 3\mathbf{j} + \mathbf{k}$ is normal to Π_1 and $4\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}$ is normal to Π_2

As the line is perpendicular to both normal vectors, the direction vector of the line is given by

i j k
\n1
$$
-3
$$
 1
\n4 -3 -2
\n**l** = 9**i** + 6**j** + 9**k**

Dividing by the scalar 3 to get this vector in a simple form, gives the direction of the line as $3\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$

The Cartesian equation of both planes are: $\Pi_1: x-3y+z=10$ Π_2 : $4x - 3y - 2z = 1$ **(1) (2)** Setting $z = 0$ and then subtracting equation **(2)** from equation **(1)** gives $3x = -9 \implies x = -3$ Substituting for x in equation (1) gives

 $-3 - 3y = 10 \implies y = -\frac{13}{3}$

So $-3i - \frac{13}{3}j$ is a point on the line

The equation of the line of intersection of the two planes is $r = -3i - \frac{13}{3}j + \lambda(3i + 2j + 3k)$

4
$$
\Pi_1: \mathbf{r} \cdot (\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}) = 1
$$
 and $\Pi_2: \mathbf{r} \cdot (-4\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}) = 7$

The normal of the planes are in the directions:

 $n_1 = i + 2j - 2k$ and $n_2 = -4i + 4j + 7k$

Let the angle between these normal be *θ*, where:

$$
\cos \theta = \frac{(\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}) \cdot (-4\mathbf{i} + 4\mathbf{j} + 7\mathbf{k})}{\sqrt{1^2 + 2^2 + (-2)^2} \times \sqrt{(-4)^2 + 4^2 + 7^2}}
$$

= $\frac{-4 + 8 - 14}{3 \times 9}$
= $-\frac{10}{27}$
 $\theta = 111.7...$
So the acute angle between the planes is:

 $180 - 111.7... = 68.26...$ $= 68.3^{\circ}$ (3 s.f.)

Solution Bank

- **5** $\Pi_1 : \mathbf{r} \cdot (3\mathbf{i} 4\mathbf{j} + 12\mathbf{k}) = 9$ and $\Pi_2 : \mathbf{r} \cdot (5\mathbf{i} 12\mathbf{k}) = 7$ The normal of the planes are in the directions: $n_1 = 3i - 4j + 12k$ and $n_2 = 5i - 12k$ Let the angle between these normal be θ , where: $(3i - 4j + 12k)$. $(5i - 12k)$ $^{2} + (-4)^{2} + 12^{2} \times \sqrt{5^{2} + (-12)^{2}}$ $3i - 4j + 12k$). $(5i - 12)$ cos $3^2 + (-4)^2 + 12^2 \times \sqrt{5^2 + (-12)^2}$ $\theta = \frac{(3\mathbf{i} - 4\mathbf{j} + 12\mathbf{k}) \cdot (5\mathbf{i} - 4\mathbf{j})}{\sqrt{3\mathbf{i} + 12\mathbf{k}} \cdot (5\mathbf{i} - 4\mathbf{j})}$ $+(-4)^{2} +12^{2} \times \sqrt{5^{2} + (-1)^{2}}$ **i** – 4**j** + 12**k**). (5**i** – 12**k** $15 - 144$ $=\frac{15-144}{13\times13}$ $=-\frac{129}{169}$ $\theta = 139.752...$ So the acute angle between the planes is: $180 - 139.752... = 40.24...$ $= 40.2^{\circ}$ (3 s.f.)
- **6** $l: \mathbf{r} = 2\mathbf{i} + \mathbf{j} 5\mathbf{k} + \lambda(4\mathbf{i} + 4\mathbf{j} + 7\mathbf{k})$

 Π : $\mathbf{r} \cdot (2\mathbf{i} + \mathbf{j} - 2\mathbf{k}) = 13$

The normal to the plane is in the direction:

$$
\mathbf{n} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k}
$$

Let the angle between this normal and the line, l , be θ , where:

$$
\cos \theta = \frac{(4\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}) \cdot (2\mathbf{i} + \mathbf{j} - 2\mathbf{k})}{\sqrt{4^2 + 4^2 + 7^2} \times \sqrt{2^2 + 1^2 + (-2)^2}}
$$

$$
= \frac{8 + 4 - 14}{9 \times 3}
$$

$$
= -\frac{2}{27}
$$

 $\theta = 94.24...$

The acute angle, α , between the line and the plane is found using $\alpha + \theta = 90^{\circ}$ Hence:

 $\alpha + 94.248... = 90$

 $\alpha = -4.248...$

So the acute angle between the planes is 4.25° (3 s.f.)

Solution Bank

7 $l: \mathbf{r} = -\mathbf{i} - 7\mathbf{j} - 13\mathbf{k} + \lambda(3\mathbf{i} + 4\mathbf{j} - 12\mathbf{k})$ Π : $\mathbf{r} \cdot (4\mathbf{i} - 4\mathbf{j} - 7\mathbf{k}) = 9$ The normal to the plane is in the direction:

 $n = 4i - 4j - 7k$

Let the angle between this normal and the line, *l*, be *θ*, where:

$$
\cos \theta = \frac{(3\mathbf{i} + 4\mathbf{j} - 12\mathbf{k}) \cdot (4\mathbf{i} - 4\mathbf{j} - 7\mathbf{k})}{\sqrt{3^2 + 4^2 + (-12)^2} \times \sqrt{4^2 + (-4)^2 + (-7)^2}}
$$

=
$$
\frac{12 - 16 + 84}{13 \times 9}
$$

=
$$
\frac{80}{117}
$$

 $\theta = 46.86...$

The acute angle, α , between the line and the plane is found using $\alpha + \theta = 90^{\circ}$ Hence:

 $\alpha + 46.86... = 90$

$$
\alpha=43.13...
$$

So the acute angle between the planes is 43.1° (3 s.f.)

8 First find a normal **n** to the plane

$$
\mathbf{n} = (4\mathbf{i} - \mathbf{j} - \mathbf{k}) \times (4\mathbf{i} - 5\mathbf{j} - 3\mathbf{k}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & -1 & -1 \\ 4 & -5 & 3 \end{vmatrix} = -8\mathbf{i} - 16\mathbf{j} - 16\mathbf{k}
$$

Dividing by 8, this simplifies to $-i-2j-2k$

Let θ be the angle between the line and the normal to the plane.

Using the definition of the scalar product $\mathbf{a}.\mathbf{b} = |\mathbf{a}||\mathbf{b}| \cos \theta$ gives

$$
\cos \theta = \frac{(-4\mathbf{i} - 7\mathbf{j} + 4\mathbf{k}) \cdot (-\mathbf{i} - 2\mathbf{j} - 2\mathbf{k})}{\sqrt{(-4)^2 + (-7)^2 + 4^2} \sqrt{(-1)^2 + (-2)^2 + (-2)^2}} = \frac{4 + 14 - 8}{\sqrt{81} \times \sqrt{9}} = \frac{10}{9 \times 3} = \frac{10}{27}
$$

Let α be the acute angle between the line and the plane. As $\cos \theta > 0$, θ is acute and so $\theta + \alpha = 90^{\circ}$

$$
\cos \theta = \frac{10}{27} \Rightarrow \theta = 68.3^{\circ}
$$
 (3 s.f.), so $\alpha = 90^{\circ} - 68.3^{\circ} = 21.7^{\circ}$ (3 s.f.)

9 a
$$
\Pi
$$
 : $\mathbf{r}.(10\mathbf{i}+10\mathbf{j}+23\mathbf{k})=81$

The unit vector parallel to $10\mathbf{i} + 10\mathbf{j} + 23\mathbf{k}$ is:

$$
\hat{\mathbf{n}} = \frac{1}{\sqrt{10^2 + 10^2 + 23^2}} (10\mathbf{i} + 10\mathbf{j} + 23\mathbf{k})
$$

$$
= \frac{1}{27} (10\mathbf{i} + 10\mathbf{j} + 23\mathbf{k})
$$

So the equation of the plane may be written as: $\mathbf{r} \cdot \hat{\mathbf{n}} = \frac{81}{27}$

 $=$ 3

Therefore, the perpendicular distance from the origin to the plane is 3.

Solution Bank

9 b The plane, Π' , parallel to Π , passing through the point $(-1, -1, 4)$ has the equation:

$$
\mathbf{r} \cdot \hat{\mathbf{n}} = (-\mathbf{i} - \mathbf{j} + 4\mathbf{k}) \cdot \frac{1}{27} (10\mathbf{i} + 10\mathbf{j} + 23\mathbf{k})
$$

= $-\frac{10}{27} - \frac{10}{27} + \frac{4 \times 23}{27}$
= $\frac{8}{3}$

So the perpendicular distance from $(-1, -1, 4)$ to the plane is $\frac{8}{3}$ 3

and the distance between Π and Π' is:

$$
3 - \frac{8}{3} = \frac{1}{3}
$$

c The plane, Π' , parallel to Π , passing through the point (2, 1, 3) has the equation:

$$
\mathbf{r} \cdot \hat{\mathbf{n}} = (2\mathbf{i} + \mathbf{j} + 3\mathbf{k}) \cdot \frac{1}{27} (10\mathbf{i} + 10\mathbf{j} + 23\mathbf{k})
$$

= $\frac{20}{27} + \frac{10}{27} + \frac{3 \times 23}{27}$
= $\frac{11}{3}$

So the perpendicular distance from $(2, 1, 3)$ to the plane is $\frac{11}{2}$ 3

and the distance between Π and Π' is:

$$
3 - \frac{11}{3} = -\frac{2}{3} = \frac{2}{3}
$$

d The plane, Π' , parallel to Π , passing through the point (6, 12, -9) has the equation:

$$
\mathbf{r} \cdot \hat{\mathbf{n}} = (6\mathbf{i} + 12\mathbf{j} - 9\mathbf{k}) \cdot \frac{1}{27} (10\mathbf{i} + 10\mathbf{j} + 23\mathbf{k})
$$

= $\frac{60}{27} + \frac{120}{27} - \frac{9 \times 23}{27}$
= -1

So the perpendicular distance from $(6, 12, -9)$ to the plane is -1 and the distance between Π and Π' is: $3 - (-1) = 4$

Solution Bank

- **10 a** Π_1 : **r.** $(6\mathbf{i} + 6\mathbf{j} 7\mathbf{k}) = 55$ and Π_2 : **r.** $(6\mathbf{i} + 6\mathbf{j} 7\mathbf{k}) = 22$ $\frac{1}{(3a)^2 + 6^2 + (-7)^2}$ (6**i** + 6**j** - 7**k**) $\hat{\mathbf{n}} = \frac{1}{\sqrt{1 - \hat{\mathbf{n}}}} (6\mathbf{i} + 6\mathbf{j} - 7)$ $6^2 + 6^2 + (-7)$ $=$ $(6i+6j + 6^2 + (\hat{\mathbf{n}} = \frac{1}{\sqrt{1 - \mathbf{r}^2}} (6\mathbf{i} + 6\mathbf{j} - 7\mathbf{k})$ $\frac{1}{2}$ (6**i** + 6**j** – 7**k**) 11 $=\frac{1}{11}(6i+6j-7k)$ Hence for Π 1: $\mathbf{r} \cdot \hat{\mathbf{n}} = \frac{55}{11}$ $= 5$ and for Π 2: $\mathbf{r} \cdot \hat{\mathbf{n}} = \frac{22}{11}$ $= 2$ Since the planes are parallel, the distance between them is: $5 - 2 = 3$
	- **b** Π_1 : $\mathbf{r} = 3\mathbf{i} + 4\mathbf{j} + \mathbf{k} + \lambda(4\mathbf{i} + \mathbf{k}) + \mu(8\mathbf{i} + 3\mathbf{j} + 3\mathbf{k})$ Π_2 : $\mathbf{r} = 14\mathbf{i} + 2\mathbf{j} + 2\mathbf{k} + \lambda(3\mathbf{j} + \mathbf{k}) + \mu(8\mathbf{i} - 9\mathbf{j} - \mathbf{k})$

As the planes are parallel, they share the same unit normal. Calculate it using Π 1:

$$
\mathbf{n}_1 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & 0 & 1 \\ 8 & 3 & 3 \end{vmatrix}
$$

= $\mathbf{i}(0-3) - \mathbf{j}(12-8) + \mathbf{k}(12-0)$
= $-3\mathbf{i} - 4\mathbf{j} + 12\mathbf{k}$

$$
\hat{\mathbf{n}} = \frac{1}{\sqrt{(-3)^2 + (-4)^2 + 12^2}} (-3\mathbf{i} - 4\mathbf{j} + 12\mathbf{k})
$$

= $\frac{1}{13}(-3\mathbf{i} - 4\mathbf{j} + 12\mathbf{k})$
For Π_1 :

$$
\mathbf{r} \cdot \hat{\mathbf{n}} = \frac{1}{13}(3\mathbf{i} + 4\mathbf{j} - \mathbf{k}).(-3\mathbf{i} - 4\mathbf{j} + 12\mathbf{k})
$$

= $-\frac{13}{13}$
= -1

And for Π 2: $\mathbf{r}.\hat{\mathbf{n}} = \frac{1}{13}(14\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}).(-3\mathbf{i} - 4\mathbf{j} + 12\mathbf{k})$ 26 13 2 = − = −

Since the planes are parallel, the distance between them is: $|(-1) - (-2)| = 1$

Solution Bank

11 The shortest distance between two skew lines $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ and $\mathbf{r} = \mathbf{c} + \mu \mathbf{d}$ is $\frac{(a-c)(b \times d)}{(d-a)(b \times d)}$ $|b \times d|$ $(a-c)$ **.** $(b \times d)$ $b \times d$ $-c$). $(b \times$ × **.**

In this case:
$$
a-c = \mathbf{i} - (3\mathbf{i} - \mathbf{j} + \mathbf{k}) = -2\mathbf{i} + \mathbf{j} - \mathbf{k}
$$

\n $b \times d = (-3\mathbf{i} - 12\mathbf{j} + 11\mathbf{k}) \times (2\mathbf{i} + 6\mathbf{j} - 5\mathbf{k}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -3 & -12 & 11 \\ 2 & 6 & -5 \end{vmatrix} = -6\mathbf{i} + 7\mathbf{j} + 6\mathbf{k}$

$$
\text{Shortest distance} = \left| \frac{(-2\mathbf{i} + \mathbf{j} - \mathbf{k}) \cdot (-6\mathbf{i} + 7\mathbf{j} + 6\mathbf{k})}{\sqrt{(-6)^2 + 7^2 + 6^2}} \right| = \left| \frac{12 + 7 - 6}{\sqrt{121}} \right| = \frac{13}{11}
$$

$$
12 l_i : \mathbf{r} = 2\mathbf{i} - \mathbf{j} + \mathbf{k} + \lambda (-3\mathbf{i} - 4\mathbf{j} + 5\mathbf{k})
$$

$$
l_2: \mathbf{r} = \mathbf{j} + \mathbf{k} + \mu(-3\mathbf{i} - 4\mathbf{j} + 5\mathbf{k})
$$

Let *A* be a general point on l_1 and let *B* be a general point on l_2 , then:

$$
\overline{AB} = \begin{pmatrix} -2 \\ 2 \\ 0 \end{pmatrix} + t \begin{pmatrix} -3 \\ -4 \\ 5 \end{pmatrix}
$$
 where $t = \mu - \lambda$

Let the distance AB be x, then:
\n
$$
x^2 = (-2-3t)^2 + (2-4t)^2 + (0-5t)^2
$$
\n
$$
= 4 + 12t + 9t^2 + 4 - 16t + 16t^2 + 25t^2
$$
\n
$$
= 50t^2 - 4t + 8
$$
\n
$$
\frac{d}{dt}(x^2) = 100t - 4
$$
\nAt the minimum:
\n
$$
\frac{d}{dt}(x^2) = 0
$$
\nTherefore:

Therefore:

$$
100t - 4 = 0 \Rightarrow t = \frac{1}{25}
$$

Hence:

$$
x^{2} = 50\left(\frac{1}{25}\right)^{2} - 4\left(\frac{1}{25}\right) + 8
$$

$$
x^{2} = \frac{198}{25}
$$

$$
x = \frac{\sqrt{198}}{25}
$$

13 a l_1 : $\mathbf{r} = \mathbf{i} + \mathbf{j} + \lambda(2\mathbf{i} - \mathbf{j} + 5\mathbf{k})$ l_2 : $\mathbf{r} = -\mathbf{i} + \mathbf{j} + 2\mathbf{k} + \mu(2\mathbf{i} - 5\mathbf{j} + \mathbf{k})$ If the lines meet then: 1) $(2)(-1)$ (2) $1 + \lambda$ | -1|=| 1|+ μ | -5 0 (5) (2) (1 $\begin{pmatrix} 1 \\ 1 \\ + \lambda \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ - \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ + \mu \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -5 \\ - \end{pmatrix}$ (0) (5) (2) (1) $1+2\lambda = -1+2\mu$ **(1)** $1 - \lambda = 1 - 5\mu$ (2) $5\lambda = 2 + \mu$ (3) Adding $2 \times (2)$ to (1) gives: $3=1-8\mu \Rightarrow \mu=-\frac{1}{4}$ 4 $= 1 - 8\mu \Rightarrow \mu = -$ Substituting $\mu = -\frac{1}{4}$ into **(1)** gives: $1 + 2\lambda = -1 + 2\left(-\frac{1}{4}\right)$ $+2\lambda = -1 + 2\left(-\frac{1}{4}\right)$ $2\lambda = -2 - \frac{1}{2}$ 2 $\lambda = -2 -$ 5 4 $\lambda = -$ Substituting $\mu = -\frac{1}{4}$ and $\lambda = -\frac{5}{4}$ $\lambda = -\frac{3}{4}$ into **(3)** gives: $5\left(-\frac{5}{1}\right) = 2 - \frac{1}{4}$ $\left(-\frac{5}{4}\right) = 2 - \frac{1}{4}$ $\frac{25}{4} = \frac{7}{4}$

> Therefore, the lines do not meet. Consider that l_1 and l_2 are of the form: l_1 : $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ and l_2 : $\mathbf{r} = \mathbf{c} + \lambda \mathbf{d}$

Then the shortest distance between the lines is given by:

$$
d = \frac{(\mathbf{a} - \mathbf{c}) \cdot (\mathbf{b} \times \mathbf{d})}{|\mathbf{b} \times \mathbf{d}|}
$$

\n
$$
\mathbf{a} - \mathbf{c} = \mathbf{i} + \mathbf{j} - (-\mathbf{i} + \mathbf{j} + 2\mathbf{k})
$$

\n
$$
= 2\mathbf{i} - 2\mathbf{k}
$$

\n
$$
\mathbf{b} \times \mathbf{d} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & 5 \\ 2 & -5 & 1 \end{vmatrix}
$$

\n
$$
= \mathbf{i}(-1 + 25) - \mathbf{j}(2 - 10) + \mathbf{k}(-10 + 2)
$$

\n
$$
= 24\mathbf{i} + 8\mathbf{j} - 8\mathbf{k}
$$

Solution Bank

Solution Bank

Therefore: $(2i - 2k) \cdot (24i + 8j - 8k)$ $^{2}+8^{2}+(-8)^{2}$ $(24i + 8j - 8)$ $24^2 + 8^2 + (-8$ $d = \frac{(2\mathbf{i} - 2\mathbf{k}) \cdot (24\mathbf{i} + 8\mathbf{j} - 4\mathbf{k})}{\sqrt{2\mathbf{i} + 8\mathbf{j}^2 + 4\mathbf{k}^2}}$ $+8^2+(\mathbf{i} - 2\mathbf{k} \cdot (24\mathbf{i} + 8\mathbf{j} - 8\mathbf{k})$ $^{2}+1^{2}+(-1)^{2}$ $48 + 0 + 16$ $8\sqrt{3^2+1^2+(-1)}$ $= \frac{48 + 0 + }{6}$ $+1^2$ + (- $=\frac{8\sqrt{11}}{11}$

13 b
$$
l_1: r = 2i + j + -2k + \lambda(2i - 2j + 2k)
$$

$$
l_2: \mathbf{r} = \mathbf{i} - \mathbf{j} + 3\mathbf{k} + \mu(\mathbf{i} - \mathbf{j} + \mathbf{k})
$$

$$
2\mathbf{i} - 2\mathbf{j} + 2\mathbf{k} = 2(\mathbf{i} - \mathbf{j} + \mathbf{k})
$$

Therefore, the lines are parallel. Let *A* be a general point on l_1 and let *B* be a general point on l_2 , then:

$$
\overrightarrow{BA} = \begin{pmatrix} -1 \\ -2 \\ 5 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}
$$
 where $t = \lambda - \mu$

Let the distance *AB* be *x*, then: $(x^{2} - (1+t)^{2} + (-2-t)^{2} + (5+t)^{2})$

$$
x = (-1+t) + (-2-t) + (3+t)
$$

= 1-2t+t²+4+4t+t²+25+10t+t²
= 3t²+12t+30

$$
\frac{d}{dt}(x^2) = 6t+12
$$

At the minimum:

$$
\frac{d}{dt}(x^2) = 0
$$

Therefore:

$$
6t+12 = 0 \Rightarrow t = -2
$$

Hence:

$$
x^2 = 3(-2)^2 + 12(-2) + 30
$$

$$
x^2 = 18
$$

$$
x = 3\sqrt{2}
$$

13 c l_1 : **r** = **i** + **j** + 5**k** + λ (2**i** - **j** + 5**k**)

Solution Bank

 l_2 : $\mathbf{r} = -\mathbf{i} - \mathbf{j} + 2\mathbf{k} + \mu(\mathbf{i} + \mathbf{j} + \mathbf{k})$ If the lines meet then: 1) (2) (-1) (1) $1 \mid + \lambda \mid 1 \mid = |-1| + \mu | 1$ 5 (-2) (2) (1) $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ (5) (-2) (2) (1) $1+2\lambda = -1 + \mu$ (1) $1 + \lambda = -1 + \mu$ (2) $5 - 2\lambda = 2 + \mu$ (3) Subtracting **(2)** from **(1)** gives: $\lambda = 0$ Substituting $\lambda = 0$ into (2) gives: $\mu = 2$ Substituting $\lambda = 0$ and $\mu = 2$ into (3) gives: $5 - 2(0) = 2 + (2)$ $5 = 4$ Therefore, the lines do not meet. Consider that l_1 and l_2 are of the form: l_1 : $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ and l_2 : $\mathbf{r} = \mathbf{c} + \lambda \mathbf{d}$ Then the shortest distance between the lines is given by: $d = \frac{(\mathbf{a}-\mathbf{c})\cdot(\mathbf{b}\times\mathbf{d})}{|\mathbf{b}\times\mathbf{d}|}$ $\mathbf{b} \times \mathbf{d}$ $a - c = i + j + 5k - (-i - j + 2k)$ $= 2\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ 2 1 -2 11 1 \times **d** = 2 1 – **ijk** $\mathbf{b} \times \mathbf{d}$ $= i(1+2) - j(2+2) + k(2-1)$ $=3i-4j+k$ Therefore: $(2\mathbf{i}+2\mathbf{j}+3\mathbf{k})\cdot(3\mathbf{i}-4\mathbf{j}+\mathbf{k})$ $^{2} + (-4)^{2} + 1^{2}$ $2i + 2j + 3k$ \cdot $(3i - 4)$ $3^2 + (-4)^2 +1$ $d = \frac{(2\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) \cdot (3\mathbf{i} - 4\mathbf{j} + 3\mathbf{k})}{\sqrt{3\mathbf{i} - 4\mathbf{j} + 3\mathbf{k}}}}$ $+(-4)^{2}$ + $\mathbf{i} + 2\mathbf{j} + 3\mathbf{k} \cdot (3\mathbf{i} - 4\mathbf{j} + \mathbf{k})$ $=\frac{6-8+3}{\sqrt{2}}$ 26 $=\frac{6-8+}{2}$ $=\frac{\sqrt{26}}{26}$

Pearson

Solution Bank

$$
14 l_1: \mathbf{r} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k} + \lambda (2\mathbf{i} - \mathbf{j} - \mathbf{k})
$$

A is the point $(4, 1, -1)$ Let *B* be a general point on *l*, then:

$$
\overrightarrow{AB} = \begin{pmatrix} -1 \\ -2 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}
$$

Let the distance *AB* be *x*, then:

$$
x^{2} = (-1 + 2\mu)^{2} + (-2 - \mu)^{2} + (3 - \mu)^{2}
$$

= 14 - 6\mu + 6\mu²

$$
\frac{\mathrm{d}}{\mathrm{d}\mu}\left(x^2\right) = -6 + 12\,\mu
$$

At the minimum:

$$
\frac{\mathrm{d}}{\mathrm{d}\mu}\left(x^2\right) = 0
$$

Therefore:

$$
-6 + 12\mu = 0 \Rightarrow \mu = \frac{1}{2}
$$

Hence:

$$
x2 = 14-6\left(\frac{1}{2}\right)+6\left(\frac{1}{2}\right)^{2}
$$

$$
x2 = \frac{25}{2}
$$

$$
x = \frac{5\sqrt{2}}{2}
$$

15 a Π : $\mathbf{r} \cdot (\mathbf{i} + \mathbf{j} - \mathbf{k}) = 4$

The line $\mathbf{r} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k} + \lambda(-\mathbf{i} + 2\mathbf{j} + \mathbf{k})$ passes through the point (2, 3, 1). The point (2, 3, 1) also lies on the plane $\bf{r}.(-i + j + k) = 4$ as $2 \times 1 + 3 \times 1 + 1 \times (-1) = 4$ So the line and the plane have this point in common.

The line is in the direction $-\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ which is parallel to the plane as it is perpendicular to the normal **i** + **j** - **k** as $-1 \times 1 + 2 \times 1 + 1 \times -1 = 0$

As the line also has a common point with the plane, it lies in the plane.

Solution Bank

15 b $r = -i + 2j + 4k + \lambda(-i + 2j + k)$

The line is in the direction of −**i** + 2**j** + **k** which is parallel to the plane as it is parallel to the line discussed in part **a**.

 $A = (2, 3, 1)$ lies on the plane.

Let *B* be a general point on *l*, then:

$$
\overrightarrow{AB} = \begin{pmatrix} -3 \\ -1 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}
$$

Let the distance *AB* be *x*, then:

$$
x^{2} = (-3 - \lambda)^{2} + (-1 + 2\lambda)^{2} + (3 + \lambda)^{2}
$$

= 9 + 6\lambda + \lambda^{2} + 1 - 4\lambda + 4\lambda^{2} + 9 + 6\lambda + \lambda^{2}
= 19 + 8\lambda + 6\lambda^{2}

$$
\frac{d}{d\lambda}(x^{2}) = 18 + 12\lambda
$$

At the minimum:

$$
\frac{d}{d\lambda}(x^{2}) = 0
$$

d $\frac{1}{\lambda}(x^2)$

Therefore:

$$
18 + 12\lambda = 0 \Rightarrow \lambda = -\frac{2}{3}
$$

Hence:

$$
x^{2} = 19 + 8\left(-\frac{2}{3}\right) + 6\left(-\frac{2}{3}\right)^{2}
$$

$$
x^{2} = \frac{49}{3}
$$

$$
x = \frac{7\sqrt{3}}{3}
$$