Solution Bank

Exercise 2E

- 1 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1 \Longrightarrow \frac{2x}{a^2} \frac{2y}{b^2} \frac{dy}{dx} = 0$ which gives $\frac{dy}{dx} = \frac{b^2 x}{a^2 y}$
 - **a** $a^2 = 16, b^2 = 2 \Rightarrow \frac{dy}{dx} = \frac{x}{8y}$ At (12, 4), $\frac{dy}{dx} = \frac{3}{8}$ Equation of tangent is $y - 4 = \frac{3}{8}(x - 12)$ or 8y = 3x - 4Equation of normal is $y - 4 = -\frac{8}{3}(x - 12)$ or 3y + 8x = 108
 - **b** $a^2 = 36, b^2 = 12 \Rightarrow \frac{dy}{dx} = \frac{x}{3y}$ At (12, 6), $\frac{dy}{dx} = \frac{2}{3}$ Equation of tangent is $y - 6 = \frac{2}{3}(x - 12)$ or 3y = 2x - 6

Equation of normal is $y-6 = -\frac{3}{2}(x-12)$ or 2y+3x = 48

- c $a^2 = 25, b^2 = 3$ $\therefore \frac{dy}{dx} = \frac{3x}{25y}$ at (10, 3) $y' = \frac{2}{5}$ At (10, 3) equation of tangent is $y - 3 = \frac{2}{5}(x - 10)$ or 5y = 2x - 5Equation of normal is $y - 3 = -\frac{5}{2}(x - 10)$ or 2y + 5x = 56
- 2 a $x = 5\cosh t$, $y = 2\sinh t \Rightarrow \frac{dy}{dx} = \frac{2\cosh t}{5\sinh t}$ Equation of tangent is $y - 2\sinh t = \frac{2\cosh t}{5\sinh t}(x - 5\cosh t)$ or $5y\sinh t + 10 = 2x\cosh t$ Equation of normal is $y - 2\sinh t = -\frac{5\sinh t}{2\cosh t}(x - 5\cosh t)$ or $2y\cosh t + 5x\sinh t = 29\cosh t\sinh t$

b
$$x = \sec t, \ y = 3\tan t \Rightarrow \frac{dy}{dx} = \frac{3\sec^2 t}{\sec t \tan t} = \frac{3\sec t}{\tan t}$$

Equation of tangent is $y - 3\tan t = \frac{3\sec t}{\tan t}(x - \sec t)$ or $y\tan t + 3 = 3x\sec t$
Equation of normal is $y - 3\tan t = -\frac{\tan t}{3\sec t}(x - \sec t)$ or $3y\sec t + x\tan t = 10\sec t\tan t$

INTERNATIONAL A LEVEL

Further Pure Maths 3

Solution Bank

4 $x = a \cosh t$, $y = b \sinh t \Rightarrow \frac{dy}{dx} = \frac{y}{\dot{x}} = \frac{b \cosh t}{a \sinh t}$ Gradient of normal is $-\frac{a \sinh t}{b \cosh t}$ Equation of normal is $y - b \sinh t = -\frac{a \sinh t}{b \cosh t} (x - a \cosh t)$ $by \cosh t - b^2 \sinh t \cosh t = -ax \sinh t + a^2 \cosh t \sinh t$

5
$$x = 4\cosh t$$
, $y = 3\sinh t \Rightarrow \frac{dy}{dx} = \frac{3\cosh t}{4\sinh t}$
Equation of tangent is $y - 3\sinh t = \frac{3\cosh t}{4\sinh t}(x - 4\cosh t)$

a At A,
$$x = 0 \Rightarrow y = 3\sinh t - \frac{3\cosh^2 t}{\sinh t} = -\frac{3}{\sinh t}$$

So A is $\left(0, -\frac{3}{\sinh t}\right)$

b Using the result from question 4 with a = 4, b = 3Equation of normal is $4x \sinh t + 3y \cosh t = (4^2 + 3^2) \sinh t \cosh t$

$$= 25 \sinh t \cosh t$$

At B, $x = 0 \Rightarrow y = \frac{25}{3} \sinh t$ so $B \operatorname{is}\left(0, \frac{25}{3} \sinh t\right)$

с

$$B$$

 $4 \cosh U$
 P
 O
 A

Area of
$$\Delta APB = \frac{1}{2} \left| \left(\frac{25}{3} \sinh t - \left(-\frac{3}{\sinh t} \right) \right) 4 \cosh t \right|$$
$$= \frac{2}{3} \left| (25 \sinh^2 t + 9) \coth t \right|$$

Solution Bank

6 $\frac{x^2}{4} - \frac{y^2}{9} = 1$ $x = 2 \sec t, a = 2$

 $y = 3\tan t, \ b = 3$

From question 3 the equation of the tangent is:

 $3x \sec t - 2y \tan t = 6$ Tangents meet at (1, 0), so let x = 1, y = 0 $\Rightarrow 3 \sec t = 6$

so
$$\frac{1}{2} = \cos t$$

Then
$$t = \pm \frac{\pi}{3}$$

 $\sec\left(\pm \frac{\pi}{3}\right) = 2$, $\tan\left(\pm \frac{\pi}{3}\right) = \pm\sqrt{3}$

So the coordinates of P and Q are $(4, 3\sqrt{3})$ and $(4, -3\sqrt{3})$

7 Using the result y = mx + c is a tangent to $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ for $b^2 + c^2 = a^2 m^2$

$$y = 2x + c \implies m = 2$$

$$\frac{x^2}{10} - \frac{y^2}{4} = 1 \implies a^2 = 10, b^2 = 4$$

So $4 + c^2 = 2^2 \times 10 = 40$
 $c^2 = 36$
 $c = \pm 6$

8 Use the result $b^2 + c^2 = a^2 m^2$ for y = mx + c to be a tangent to $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

$$y = mx + 12 \Longrightarrow c = 12$$

$$\frac{x^2}{49} - \frac{y^2}{25} = 1 \Longrightarrow a^2 = 49, b^2 = 25$$

So $25 + 12^2 = 49m^2$
 $169 = 49m^2$
 $m^2 = \left(\frac{13}{7}\right)^2$
 $m = \pm \frac{13}{7}$

INTERNATIONAL A LEVEL

Further Pure Maths 3

Solution Bank

- 9 Use the result $b^2 + c^2 = a^2 m^2$ for y = mx + c to be a tangent to $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$
 - Using $\frac{x^2}{4} \frac{y^2}{15} = 1 \Rightarrow a^2 = 4, b^2 = 15$ so $15 + c^2 = 4m^2$ (1) Using $\frac{x^2}{9} - \frac{y^2}{95} = 1 \Rightarrow a^2 = 9, b^2 = 95$ so $95 + c^2 = 9m^2$ (2) Solving the simultaneous equations: (2) - (1) $80 = 5m^2$ $\Rightarrow m^2 = 16$ $m = \pm 4$ Substituting $m = \pm 4$ into (1): $c^2 = 4(16) - 15$ = 49 $\Rightarrow c = \pm 7$ So $m = \pm 4$ and $c = \pm 7$, i.e. lines $y = 4x \pm 7$ and $y = -4x \pm 7$

10 a Use the result $b^2 + c^2 = a^2 m^2$ for y = mx + c to be a tangent to $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

$$y = -x + c \implies m = -1$$

Using $\frac{x^2}{25} - \frac{y^2}{16} = 1 \implies a^2 = 25, b^2 = 16$
So $16 + c^2 = 25(-1)^2$
 $c^2 = 9$
 $c = \pm 3$
But $c > 0$, so $c = 3$

b Substitute y = (3 - x) into the equation for the hyperbola

$$\frac{x^2}{25} - \frac{(3-x)^2}{16} = 1$$

$$16x^2 - 25(9 + x^2 - 6x) = 25 \times 16$$

$$-9x^2 - 225 + 150x = 400$$

$$0 = 9x^2 - 150x + 625$$

$$0 = (3x - 25)^2$$

$$\Rightarrow x = \frac{25}{3}, y = -\frac{16}{3}$$
So *P* is $\left(\frac{25}{3}, -\frac{16}{3}\right)$

Solution Bank

11 a $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ $x = a \cosh t, \ y = b \sinh t \Rightarrow \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{b \cosh t}{a \sinh t}$ Gradient of normal is $-\frac{a \sinh t}{b \cosh t}$ Equation of normal is $y - b \sinh t = -\frac{a \sinh t}{b \cosh t} (x - a \cosh t)$ $by \cosh t - b^2 \sinh t \cosh t = -ax \sinh t + a^2 \cosh t \sinh t$

b At point P, y = 0

Substituting y = 0 in the equation for the normal: $ax = (a^2 + b^2) \cosh t$ $x = \frac{(a^2 + b^2)}{a} \cosh t$ The coordinates of P are $\left(\left(\frac{a^2 + b^2}{a}\right) \cosh t, 0\right)$

c At the point (a, 0), $y = b \sinh t = 0$, which corresponds to t = 0, since $b \neq 0$ Using the general form of the equation of the tangent to a hyperbola: $bx \cosh t - ay \sinh t = ab$ bx = ab

$$x = a$$

So the equation of l_2 is x = a.

Substituting this into the equation of l_1 gives:

$$a^{2} \sinh t + by \cosh t = (a^{2} + b^{2}) \sinh t \cosh t$$
$$by \cosh t = a^{2} \sinh t (\cosh t - 1) + b^{2} \sinh t \cosh t$$
$$y = \frac{a^{2} \sinh t (\cosh t - 1) + b^{2} \sinh t \cosh t}{b \cosh t}$$
The coordinates of Q are then $\left(a, \frac{(a^{2} + b^{2}) \sinh t \cosh t - a^{2} \sinh t}{b \cosh t}\right)$

12 a Use the chain rule to find the gradient of the tangent to $\frac{x^2}{49} - \frac{y^2}{25} = 1$

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{5\sec^2\theta}{7\tan\theta\sec\theta} = \frac{5\sec\theta}{7\tan\theta} = \frac{5}{7\sin\theta}$$

An equation of the tangent is: $y-5\tan\theta = \frac{5}{7\sin\theta}(x-7\sec\theta)$ $7y\sin\theta - 35\tan\theta\sin\theta = 5x - 35\sec\theta$ $7y\sin\theta = 5x - 35\cos\theta$

(It's easy to verify that the relation $\tan \theta \sin \theta - \sec \theta = -\cos \theta$ holds.)

INTERNATIONAL A LEVEL

Further Pure Maths 3

Solution Bank

12 b The gradient of a line that is perpendicular to l_1 is $-\frac{7\sin\theta}{5}$, therefore the equation of l_2 (which passes through the origin) is $y = -\frac{7\sin\theta}{5}x$ Substitute this value into the equation of l_1 : $-\frac{49\sin^2\theta}{5}x = 5x - 35\cos\theta$ $-49x\sin^2\theta = 25x - 175\cos\theta$ $x = \frac{175\cos\theta}{25 + 49\sin^2\theta}$

Then
$$y = -\frac{7 \sin \theta}{5} x$$

$$= -\frac{7 \sin \theta}{5} \times \frac{175 \cos \theta}{25 + 49 \sin^2 \theta}$$

$$= -\frac{245 \sin \theta \cos \theta}{25 + 49 \sin^2 \theta}$$
The coordinates of Q are $\left(\frac{175 \cos \theta}{25 + 49 \sin^2 \theta}, -\frac{245 \sin \theta \cos \theta}{25 + 49 \sin^2 \theta}\right)$

13
$$x^2 - 4y^2 = 16 \Rightarrow \frac{x^2}{16} - \frac{y^2}{4} = 1$$
 so $a = 4, b = 2$
Let $B = (x, y), O = (x, y)$

Let $P = (x_1, y_1), Q = (x_2, y_2)$

Use the chain rule to find the gradient for a general point on the hyperbola $(4\cosh t, 2\sinh t)$: gradient of the tangent is $\frac{\cosh t}{2\sinh t} = \frac{x}{4y}$

The equation of the tangent at P is then $y - y_1 = \frac{x}{4y}(x - x_1)$ $4y^2 - 4yy_1 = x^2 - xx_1$

$$xx_1 - 4yy_1 = 16$$

The same holds for the tangent at Q, so $xx_2 - 4yy_2 = 16$

The point (m, n) must satisfy both equations.

Then

$$mx_1 - 4ny_1 = mx_2 - 4ny_2 \implies m(x_1 - x_2) = 4n(y_1 - y_2)$$

Then the slope of the line l_1 , which joins P and Q, is $\frac{m}{4n}$

But writing $y - y_1 = \frac{m}{4n}(x - x_1)$ gives $4ny - 4ny_1 = mx - mx_1$, and we already know that $mx_1 - 4ny_1 = 16$, so the equation of line *l* is mx - 4ny = 16

Solution Bank

14 Consider the point $(4 \sec \theta, 2 \tan \theta)$. Differentiating using the chain rule (see question 3 in this

exercise) leads to the equation for the tangent: $2x \sec \theta - 4y \tan \theta = 8$ Multiplying both sides by $\cos \theta$ gives $2x - 4y \sin \theta = 8 \cos \theta$ Substitute x = 6 and y = 4 to get $4 \sin \theta + 2 \cos \theta = 3$ Let $R \sin \alpha = 4$ and $R \cos \alpha = 2$: this gives $R \cos(\theta - \alpha) = 3$ Find R from $R^2(\cos^2 \alpha + \sin^2 \alpha) = 4^2 + 2^2$ so $R = \sqrt{4^2 + 2^2} = \sqrt{20}$ Find α by calculating $\arctan \frac{4}{2} = \arctan 2 = 1.107...$ Using the condition $\sqrt{20} \cos(\theta - 1.107...) = 3$ gives a set of values: $\theta - 1.107... = ..., 0.835..., 5.447..., 7.118..., ...$ There are only two possible values for θ in the range $[0, 2\pi]$, so there are only two possible values for θ ; therefore there are only two tangents.

15 a The equations of the asymptotes of *H* are y = x and y = -x.

Differentiating, gradient of tangent to *H* is $\frac{dy}{dx} = \frac{x}{y}$ *A* and *B* lie on the lines y = x and y = -x. Let *A* and *B* have coordinates (a, a) and (b, -b). The midpoint of *AB* is $\left(\frac{a+b}{2}, \frac{a-b}{2}\right)$

For a generic point *P* on *H*, the coordinates are (*X*, *Y*), so the gradient of the tangent at *P* is $\frac{X}{Y}$ and the equation of the tangent at *P* is $y - Y = \frac{X}{V}(x - X)$

This tangent cuts the asymptotes at A and B, so the coordinates of A and B must be on the line.

At A:
$$a - Y = \frac{X}{Y}(a - X) \Longrightarrow a = X + Y$$

At B: $-b - Y = \frac{X}{Y}(b - X) \Longrightarrow b = X - Y$
So $X = \frac{a + b}{2}$ and $Y = \frac{a - b}{2}$

b |OA| is $\sqrt{2}|a|$ for all positions of *A*, and |OB| is $\sqrt{2}|b|$ for all positions of *B*. So $|OA| \times |OB| = 2|ab|$ From part **a**, $X^2 = \frac{a^2 + 2ab + b^2}{4}$ and $Y^2 = \frac{a^2 - 2ab + b^2}{4}$ So in terms of *X* and *Y*, $|ab| = |X^2 - Y^2|$ but from the equation for *H* this is equal to 1 So $|OA| \times |OB| = 2|ab| = 2$, which is constant.