Solution Bank

Exercise 2C

1 **a**
$$a^2 = 9$$
 $b^2 = 5$
 $b^2 = a^2 (1 - e^2) \Rightarrow \frac{5}{9} = 1 - e^2$
 $\Rightarrow e^2 = \frac{4}{9}$ so $e = \frac{2}{3}$

b
$$a^2 = 16$$
 $b^2 = 9$
 $b^2 = a^2 (1 - e^2) \Rightarrow \frac{9}{16} = 1 - e^2$
 $\Rightarrow e^2 = \frac{7}{16}$ so $e = \frac{\sqrt{7}}{4}$

c
$$a^2 = 4$$
 $b^2 = 8$
Need to use $a^2 = b^2(1 - e^2)$ since $b > a$, so the ellipse is shape.

$$\frac{4}{8} = 1 - e^2 \Rightarrow e^2 = \frac{1}{2} \text{ so } e = \frac{1}{\sqrt{2}}$$

2 **a**
$$a^2 = 4$$
 $b^2 = 3$
 $b^2 = a^2 (1 - e^2) \Rightarrow \frac{3}{4} = 1 - e^2$
 $\Rightarrow e^2 = \frac{1}{4}$ so $e = \frac{1}{2}$
Foci are at $(\pm ae, 0) = (\pm 1, 0)$
Directrices are $x = \pm \frac{a}{e} \Rightarrow x = \pm 4$

b
$$a^2 = 16$$
 $b^2 = 7$
 $b^2 = a^2 (1 - e^2) \Rightarrow \frac{7}{16} = 1 - e^2$
 $\Rightarrow e^2 = \frac{9}{16}$ so $e = \frac{3}{4}$
Foci are at $(\pm ae, 0) = (\pm 3, 0)$
Directrices are $x = \pm \frac{a}{2} \Rightarrow x = \pm \frac{16}{3}$

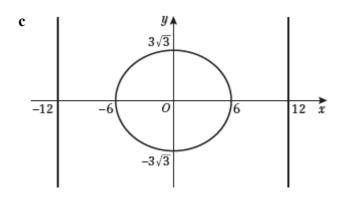
2 c
$$a^2 = 5, b^2 = 9$$

Since $b > a$, use
$$a^2 = b^2 (1 - e^2) \Rightarrow \frac{5}{9} = 1 - e^2$$

$$\Rightarrow e^2 = \frac{4}{9} \text{ so } e = \frac{2}{3}$$
Foci are at $(0, \pm be)$, i.e. foci are $(0, \pm 2)$
Directrices are $y = \pm \frac{b}{2}$, i.e. $y = \pm \frac{9}{2}$

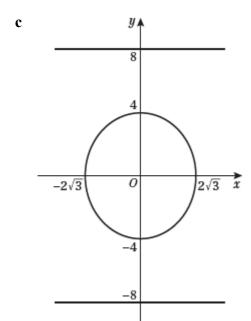
- 3 a Since the focus is on the x-axis and the directrix is parallel to the y-axis, we know that a > b. In fact, the major axis of the ellipse, on which the foci lie, has to be perpendicular to the directrix, so knowing that one focus is on the x-axis and that the directrix is perpendicular to it is enough to identify the major axis of the ellipse as lying on the x-axis.
 - **b** i The directrix is at x = 12, so $\frac{a}{e} = 12$ $\Rightarrow a = 12e$ The focus is at (ae, 0), so ae = 3 $12e \times e = 3 \Rightarrow e^2 = \frac{1}{4}$ so $e = \frac{1}{2}$

ii Since
$$ae = 3$$
, $a = 6$
Using $b^2 = a^2 (1 - e^2)$
 $b^2 = 36(1 - \frac{1}{4}) = 36 \times \frac{3}{4} = 27$
 $\Rightarrow b = 3\sqrt{3}$



Solution Bank

- 4 a Since the directrix is parallel to the x-axis, and the focus is on the y-axis, we know that b > a.
 - **b** i The directrix is at y = 8, so $\frac{b}{e} = 8$ $\Rightarrow b = 8e$ The focus is at (0, be), so be = 2 $8e \times e = 2 \Rightarrow e^2 = \frac{1}{4}$ so $e = \frac{1}{2}$
 - ii Since be = 2, b = 4As b > a, use $a^2 = b^2 (1 - e^2)$ $a^2 = 16(1 - \frac{1}{4}) = 16 \times \frac{3}{4} = 12$ $\Rightarrow a = 2\sqrt{3}$

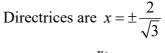


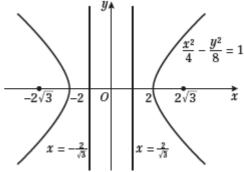
5 **a** $\frac{x^2}{5} - \frac{y^2}{3} = 1 \Rightarrow a^2 = 5, b^2 = 3$ $b^2 = a^2 (e^2 - 1) \Rightarrow \frac{3}{5} = e^2 - 1$ $\Rightarrow e^2 = \frac{8}{5} \text{ so } e = \frac{2\sqrt{2}}{\sqrt{5}} = \frac{2\sqrt{10}}{5}$

b
$$\frac{x^2}{9} - \frac{y^2}{7} = 1 \Rightarrow a^2 = 9, b^2 = 7$$

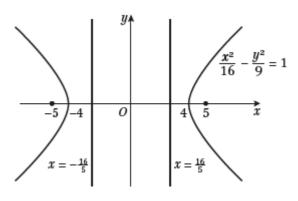
 $b^2 = a^2(e^2 - 1) \Rightarrow \frac{7}{9} = e^2 - 1$
 $\Rightarrow e^2 = \frac{16}{9} \text{ so } e = \frac{4}{3}$

- 5 c $\frac{x^2}{9} \frac{y^2}{16} = 1 \Rightarrow a^2 = 9, b^2 = 16$ $b^2 = a^2 (e^2 - 1) \Rightarrow \frac{16}{9} = e^2 - 1$ $\Rightarrow e^2 = \frac{25}{9} \text{ so } e = \frac{5}{3}$
- 6 a $\frac{x^2}{4} \frac{y^2}{8} = 1$ $a = 2, b = 2\sqrt{2}$ $b^2 = a^2 (e^2 - 1) \Rightarrow \frac{8}{4} = e^2 - 1$ $\Rightarrow e = \sqrt{3}$ Foci are at $(\pm 2\sqrt{3}, 0)$





b $\frac{x^2}{16} - \frac{y^2}{9} = 1$ a = 4, b = 3 $\Rightarrow 9 = 16(e^2 - 1) \Rightarrow e^2 = \frac{25}{16} \Rightarrow e = \frac{5}{4}$ Foci are at (±5, 0)
Directrices are $x = \pm \frac{16}{5}$

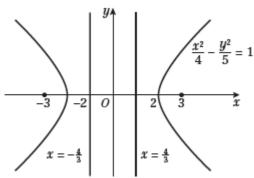


Solution Bank

6 c $\frac{x^2}{4} - \frac{y^2}{5} = 1$ $a = 2, b = \sqrt{5}$ $\Rightarrow 5 = 4(e^2 - 1) \Rightarrow e^2 = \frac{9}{4} \Rightarrow e = \frac{3}{2}$

Foci are at $(\pm 3, 0)$

Directrices are $x = \pm \frac{4}{3}$



7 **a** The eccentricity, e, of a hyperbola is given by $b^2 = a^2(e^2 - 1)$

Rearranging,
$$e = \sqrt{1 + \frac{b^2}{a^2}}$$

and the foci have coordinates $(\pm ae, 0)$

Then we just need to compute the eccentricity in each case, as follows:

i
$$e = \sqrt{1 + \frac{1}{24}} = \frac{5}{\sqrt{24}};$$

then $ae = \frac{5}{\sqrt{24}} \times \sqrt{24} = 5$

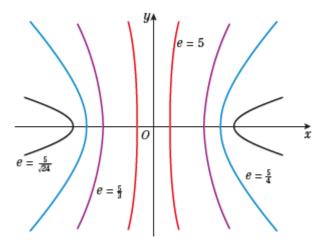
ii
$$e = \sqrt{1 + 24} = 5$$
;
then $ae = 5 \times 1 = 5$

iii
$$e = \sqrt{1 + \frac{9}{16}} = \frac{5}{4}$$
;
then $ae = \frac{5}{4} \times 4 = 5$

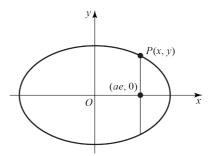
iv
$$e = \sqrt{1 + \frac{16}{9}} = \frac{5}{3}$$
;
then $ae = \frac{5}{3} \times 3 = 5$

Since for all four hyperbolas ae = 5, all have foci at $(\pm 5, 0)$

7 **b** We have already found the values of the eccentricity: $\frac{5}{\sqrt{24}}$, 5, $\frac{5}{4}$ and $\frac{5}{3}$



8 Since a > b, the ellipse has its major axis along the x-axis. Let P be a point of intersection of the chord with the ellipse, with coordinates (x, y).



The focus (ae, 0) is on the chord, so x = ae. Substitute into the equation for the ellipse:

$$\frac{(ae)^2}{a^2} + \frac{y^2}{b^2} = 1$$
$$\Rightarrow y^2 = b^2 \left(1 - e^2\right)$$

From the definition of eccentricity,

$$b^2 = a^2 (1 - e^2)$$
 so $e^2 = 1 - \frac{b^2}{a^2}$

Substituting for e^2 in the equation for y,

$$y^2 = b^2 \left(1 - 1 + \frac{b^2}{a^2} \right) \Rightarrow y = \pm \frac{b^2}{a}$$

The length of the latus rectum is $2y = \frac{2b^2}{a}$

Solution Bank

9 a Assume the foci are on the x-axis. The distance between the foci is 2ae = 16, so ae = 8

The distance between the directrices is

$$\frac{2a}{e} = 25$$

Substituting for *a* gives

$$25e^2 = 16 \Rightarrow e = \frac{4}{5}$$

b The foci are on the y-axis, thus

$$b = \frac{8}{e} = 8 \times \frac{5}{4} = 10$$

and
$$a = \left(\sqrt{1 - \frac{16}{25}}\right) 10 = \frac{3}{5} \times 10 = 6$$

Then the equation of the ellipse is

$$\frac{x^2}{36} + \frac{y^2}{100} = 1$$

10 Rewrite the equation of the ellipse by dividing both sides by 36

$$\frac{x^2}{36} + \frac{y^2}{9} = 1$$
 so $a = 6$ and $b = 3$

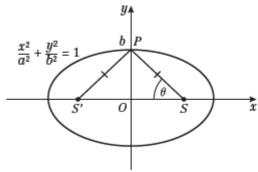
Then the eccentricity of the ellipse is

$$e = \sqrt{1 - \frac{9}{36}} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$$

The points A and B have coordinates $(\pm ae, 0)$, so they are the foci of the ellipse.

Using the focus and directrix definitions of an ellipse, for any point P with coordinates (x, y),

$$PA + PB = e\left(\frac{a}{e} + x\right) + e\left(\frac{a}{e} - x\right)$$
$$= 2a = 12$$



Consider $\triangle POS$

$$c^2 = b^2 + a^2 e^2$$
, but $b^2 = a^2 (1 - e^2)$

$$\Rightarrow c^2 = a^2 - a^2 e^2 + a^2 e^2 = a^2$$

$$\Rightarrow c = a$$

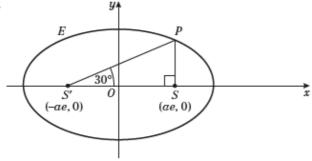
So
$$\cos \theta = \frac{ae}{a} = e$$

If you use the result that SP + S'P = 2a then since S'P = SP it is clear SP = a

Hence
$$\cos \theta = \frac{ae}{a} = e$$

Solution Bank

12



PS is y where
$$\frac{a^2 e^2}{a^2} + \frac{y^2}{b^2} = 1$$

 $y^2 = b^2 (1 - e^2)$
 $y = b\sqrt{1 - e^2}$
 $SS' = 2ae$
 $\tan 30^\circ = \frac{1}{\sqrt{3}} = \frac{y}{2ae} = \frac{b\sqrt{1 - e^2}}{2ae}$

But
$$b^2 = a^2 (1 - e^2)$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{a\sqrt{1 - e^2}\sqrt{1 - e^2}}{2ae}$$

$$\Rightarrow \frac{2e}{\sqrt{3}} = 1 - e^2$$

$$\Rightarrow e^2 + \frac{2}{\sqrt{3}}e - 1 = 0$$

Completing the square,

$$e^{2} + \frac{2}{\sqrt{3}}e + \frac{1}{3} = 1 + \frac{1}{3}$$

$$\Rightarrow \left(e + \frac{1}{\sqrt{3}}\right)^{2} = 1 + \frac{1}{3} = \frac{4}{3}$$

$$\Rightarrow e + \frac{1}{\sqrt{3}} = \frac{2}{\sqrt{3}} \text{ so } e = \frac{1}{\sqrt{3}} \quad (e > 0)$$