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Exercise 2A
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b Parametric equations .
x=4cos@,y=2sin6 b a=2 and b =3, so the Cartesian
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b Parametric equations

x=3cosd,y = 6sin0 b a=4and b =5, so the Cartesian

2 2

2 2 equation is—+-— =1
iiia x’+9)°=25 = %Jr fz ~1 42 5
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Soa=5andb=3 ilia x=cosd,y=>5sind
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b Parametric equations
x=5cosf,y=3siné
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2 iii b a=1andb=235, so the Cartesian
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equation is x° + JS/—Z =1

iva x=4cosf,y=3sinf
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b a=4 and b =3, so the Cartesian
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equation 18 el + pes =1
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Clearly P has coordinates (acosé,asin8)
and Q has coordinates (bcos@,bsin@) .
Then by definition R = (bcos 8, asinf).

Since cos’ @ +sin” @ =1, we have that the
locus described by R as @ varies from 0 to
2 2
Xy
21 1S - + ? =1

This is the equation of an ellipse.
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The matrix of a rotation of 45° anticlockwise is
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If we apply this to the general vector ( b cos 9)

a b
—cosf ———=sinf
2 2
we get
icos@+isin9
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Then we can compute:
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