

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS 4727

Further Pure Mathematics 3

MARK SCHEME

Specimen Paper

MAXIMUM MARK 72

1	Integrating factor is $e^{\int -x^{-1} dx} = e^{-\ln x} = \frac{1}{x}$		M1		For finding integrating factor
		λ	A1		For correct simplified form
	$\frac{\mathrm{d}}{\mathrm{d}x}$	$\left(\frac{y}{x}\right) = 1 \Rightarrow \frac{y}{x} = \int 1 dx \Rightarrow y = x^2 + cx$	M1		For using integrating factor correctly
	· ·		B1 A1	5	For arbitrary constant introduced correctly For correct answer in required form
				5	
2	(i)	b is the identity and so has order 1	B1		For identifying b as the identity element
		d*d=b, so d has order 2	B1	•	For stating the order of d is 2
		a*a=c*c=d , so a and c each have order 4	B1		For both orders stated
	(ii)	{b, d}	B1	1	For stating this subgroup
	(iii)	G is cyclic because it has an element of order 4	B1	1	For correct answer with justification
	(iv)	b=1, d=-1, a=i, c=-i (or vice versa for a, c)	В1	1	For all four correct values
				6	
3	(i)	Normals are $\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$ and $2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$	B1		For identifying both normal vectors
		Acute angle is $\cos^{-1} \left(\frac{ 2-4-2 }{3\times 3} \right) \approx 64^{\circ}$	M1		For using the scalar product of the normals
			M1		For completely correct process for the angle
			A1	4	For correct answer
	(ii)	Direction of line is $(\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}) \times (2\mathbf{i} + 2\mathbf{j} - \mathbf{k})$,	M1		For using vector product of normals
		i.e. $-2i + 5j + 6k$	A1		For correct vector for b
		$x-2y+2z=1$, $2x+2y-z=3 \Rightarrow 3x+z=4$, so a common point is $(1,1,1)$, for example	M1		For complete method to find a suitable a
		Hence line is $\mathbf{r} = \mathbf{i} + \mathbf{j} + \mathbf{k} + t(-2\mathbf{i} + 5\mathbf{j} + 6\mathbf{k})$	A1	4	For correct equation of line
				_	(Other methods are possible)
				ы	-
_		$($ $)$ $-\frac{1}{2}\pi i$		8	
4	(i)	$4\left((\sqrt{3})-i\right) = 8e^{-\frac{1}{6}\pi i}$	B1		For $r = 8$
			B1	2	For $\theta = -\frac{1}{6}\pi$
	(ii)	One cube root is $2e^{-\frac{1}{18}\pi i}$	B1√		For modulus and argument both correct
		Others are found be multiplying by $e^{\pm \frac{2}{3}\pi i}$	M1		For multiplication by either cube root of 1 (or
					equivalent use of symmetry)
		Giving $2e^{\frac{11}{18}\pi i}$ and $2e^{-\frac{13}{18}\pi i}$	A1		For either one of these roots
			A1	4	For both correct
	(iii)	₹			
			D1 A		
			B1√		For correct diagram from their (ii)
		The roots have equal modulus and args differing			
		by $\frac{2}{3}\pi$, so adding them geometrically makes a	M1		For geometrical interpretation of addition
		closed equilateral triangle; i.e. sum is zero	A1	3	For a correct proof (or via components, etc)
				9	

			1		
5	(i)	$(\mathbf{i} - \mathbf{j} - 2\mathbf{k}) \times (-4\mathbf{i} - 14\mathbf{j} + 2\mathbf{k}) = -30\mathbf{i} + 6\mathbf{j} - 18\mathbf{k}$	M1		For vector product of direction vectors
		So common perp is parallel to $5\mathbf{i} - \mathbf{j} + 3\mathbf{k}$	A1		For correct vector for common perp
		(5i + j + 5k) - (i + 11j + 2k) = 4i - 10j + 3k	B1		For calculating the difference of positions
		$d = \frac{\left (4\mathbf{i} - 10\mathbf{j} + 3\mathbf{k}) \cdot (5\mathbf{i} - \mathbf{j} + 3\mathbf{k}) \right }{\left 5\mathbf{i} - \mathbf{j} + 3\mathbf{k} \right } = \frac{39}{\sqrt{35}}$	M1		For calculation of the projection
		, see 1	A1	5	For correct exact answer
	(ii)	Normal vector for plane is $5\mathbf{i} - \mathbf{j} + 3\mathbf{k}$	B1√		For stating or using the normal vector
	(11)	Point on plane is $5\mathbf{i} + \mathbf{j} + 5\mathbf{k}$	B1		For using any point of l_1
		Equation is $5x - y + 3z = 25 - 1 + 15$	M1		For using relevant direction and point
		i.e. $5x - y + 3z = 39$	A1	4	For a correct equation
		1.6. 3x y + 3\(\frac{1}{2}\) = 3\(\frac{1}{2}\)	711	•	Tor a correct equation
				9	
6	(i)	$\mathbf{AQ} = \mathbf{QA} \Rightarrow \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$	M1		For considering $\mathbf{AQ} = \mathbf{QA}$ with general \mathbf{A}
		i.e. $\begin{pmatrix} a & a+b \\ c & c+d \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ c & d \end{pmatrix}$	A1		For correct simplified equation
		Hence $a = a + c$ and $a + b = b + d$	M1		For equating corresponding entries
		i.e. $c = 0$ and $d = a$	A1	4	For complete proof
	(ii)	To be non-singular, $a \neq 0$	B1	1	For stating that a is non-zero
	(iii)	Identity is $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ as usual, since this is in S	B1		For justifying the identity correctly
		Inverse of $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$ is $\begin{pmatrix} 1/a & -b/a^2 \\ 0 & 1/a \end{pmatrix}$, as $a \neq 0$	B1		For statement of correct inverse
			B1		For justification via non-zero a
		$ \begin{pmatrix} a_1 & b_1 \\ 0 & a_1 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \\ 0 & a_2 \end{pmatrix} = \begin{pmatrix} a_1 a_2 & a_1 b_2 + b_1 a_2 \\ 0 & a_1 a_2 \end{pmatrix} $	M1		For considering a general product
		This is in S, since $a_1a_2 \neq 0$, so all necessary group			
		properties are shown	A1	5	For complete proof
				10	
7	(i)	$z^n = \cos n\theta + i\sin n\theta$	B1		For applying de Moivre's theorem
		$z^{-n} = \cos n\theta - i\sin n\theta$, hence $z^{n} + z^{-n} = 2\cos n\theta$	B1	2	For complete proof
		$2^{6}\cos^{6}\theta = (z+z^{-1})^{6}$	M1		For considering $(z+z^{-1})^6$
	(11)	$= (z^{6} + z^{-6}) + 6(z^{4} + z^{-4}) + 15(z^{2} + z^{-2}) + 20$			-
			M1		For expanding and grouping terms
		$= 2\cos 6\theta + 12\cos 4\theta + 30\cos 2\theta + 20$	A1		For correct substitution of multiple angles
		Hence $\cos^6 \theta = \frac{1}{32} (\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10)$			For correct answer
		Integral is $\frac{1}{32} \left[\frac{1}{6} \sin 6\theta + \frac{3}{2} \sin 4\theta + \frac{15}{2} \sin 2\theta + 10\theta \right]_0^{\frac{1}{3}\pi}$	l		For integrating multiple angle expression
		$= \frac{1}{32} \left(\frac{1}{6} \times 0 + \frac{3}{2} \times (-\frac{1}{2} \sqrt{3}) + \frac{15}{2} \times (\frac{1}{2} \sqrt{3}) + 10 \times \frac{1}{3} \pi \right)$	A1√ M1		For use of limits
		$= \frac{1}{32} \left(3\sqrt{3} + \frac{10}{3}\pi \right)$	A1	8	For correct answer
				10	

4727 Specimen Paper [Turn over

(i)	$y = kx^2 e^{-2x} \Rightarrow y' = 2kx e^{-2x} - 2kx^2 e^{-2x}$ and	M1		For differentiation at least once
	$y'' = 2k e^{-2x} - 8kx e^{-2x} + 4kx^2 e^{-2x}$	A1		For both y' and y" correct
	$(2k - 8kx + 4kx^2 + 8kx - 8kx^2 + 4kx^2)e^{-2x} \equiv 2e^{-2x}$	M1		For substituting completely in D.E.
	Hence <i>k</i> = 1	A1	4	For correct value of k
(ii)	Auxiliary equation is $m^2 + 4m + 4 = 0 \Rightarrow m = -2$	B1		For correct repeated root
	Hence C.F. is $(A+Bx)e^{-2x}$	B1		For correct form of C.F.
	G.S. is $y = (A + Bx)e^{-2x} + x^2 e^{-2x}$	B1√		For sum of C.F. and P.I.
	$x = 0, y = 1 \Rightarrow 1 = A$	M1		For using given values of x and y in G.S.
	$y' = Be^{-2x} - 2(A + Bx)e^{-2x} + 2xe^{-2x} - 2x^2e^{-2x}$	M1		For differentiating the G.S.
	$x = 0, y' = 0 \Rightarrow 0 = B - 2A \Rightarrow B = 2$	M1	_	For using given values of x and y' in G.S.
	Hence solution is $y = (1+x)^2 e^{-2x}$	A1	7	For correct answer
(iii)	$\frac{d^2y}{dx^2} = 2 - 4 = -2$ when $x = 0$	B1		For correct value -2
	Hence (0, 1) is a maximum point	B1		For statement of maximum at $x = 0$
	1			
	$\frac{dy}{dx} = 2(1+x)e^{-2x} - 2(1+x)^2 e^{-2x} = -2x(1+x)e^{-2x},$	2.71		
	so there are no turning points for $x > 0$ Hence $0 < y \le 1$, since $y \to 0$ as $x \to \infty$	M1 A1	4	For investigation of turning points, or equi- For complete proof of given result
			4-	
			15	