4727 Mark Scheme January 2009

4727 Further Pure Mathematics 3

1 (i) (a)	(n =) 3	B1 1	For correct n		
(b)	(<i>n</i> =) 6	B1 1	For correct n		
(c)	(n =) 4	B1 1	For correct n		
(ii)	(<i>n</i> =) 4, 6	B1	For either 4 or 6		
		B1 2	For both 4 and 6 and no extras		
			Ignore all $n \dots 8$		
			SR B0 B0 if more than 3 values given, even if they include 4 or 6		
		5			
2 (i)	$\frac{\sqrt{3} + i}{\sqrt{3} - i} \times \frac{\sqrt{3} + i}{\sqrt{3} + i} = \frac{1}{2} + \frac{1}{2}i\sqrt{3}$	M1	For multiplying top and bottom by complex conjugate		
	$OR \frac{\sqrt{3} + i}{\sqrt{3} - i} = \frac{2e^{\frac{1}{6}\pi i}}{2e^{-\frac{1}{6}\pi i}}$		OR for changing top and bottom to polar form		
	$=(1)e^{\frac{1}{3}\pi i}$	A 1	For $(r =)$ 1 (may be implied)		
		A1 3	For $(\theta =) \frac{1}{3} \pi$		
			SR Award maximum A1 A0 if $e^{i\theta}$ form is not seen		
(ii)	$\left(e^{\frac{1}{3}\pi i}\right)^6 = e^{2\pi i} = 1 \implies (n = 6)$	M1	For use of $e^{2\pi i} = 1$, $e^{i\pi} = -1$, $\sin k\pi = 0$ or $\cos k\pi = \pm 1$ (may be implied)		
		A1 2	For $(n =)$ 6 SR For $(n =)$ 3 only, award M1 A0		
		5	-		
3 (i)	$\mathbf{n} = [2, 1, 3] \times [3, 1, 5]$	M1	For using direction vectors and attempt to find vector product		
	=[2,-1,-1]	A1 2	For correct direction (allow multiples)		
(ii)	$d = \frac{ [5, 2, 1] \cdot [2, -1, -1] }{\sqrt{6}}$	B1	For $(\mathbf{AB} =) [5, 2, 1]$ or any vector joining lines		
	$u = \sqrt{6}$	M1	For attempt at evaluating AB.n		
		M1	For $ \mathbf{n} $ in denominator		
	$=\frac{7}{\sqrt{6}}=\frac{7}{6}\sqrt{6}=2.8577$	A1 4	For correct distance		
6					

4727 Mark Scheme January 2009

4	$m^2 + 4m + 5 = 0$ $\Rightarrow m = \frac{-4 \pm \sqrt{16 - 20}}{2}$	M1	For attempt to solve correct auxiliary equation			
	$=-2\pm i$	A1	For correct roots			
	$CF = e^{-2x} (C\cos x + D\sin x)$	A1	For correct CF (here or later). f.t. from m AEtrig but not forms including e^{ix}			
	$PI = p\sin 2x + q\cos 2x$	B1	For stating a trial PI of the correct form			
	$y' = 2p\cos 2x - 2q\sin 2x$ $y'' = -4p\sin 2x - 4q\cos 2x$	M1	For differentiating PI twice and substituting into the DE			
	$\cos 2x \left(-4q + 8p + 5q\right)$					
	$+\sin 2x \left(-4p - 8q + 5p\right) = 65\sin 2x$	A1	For correct equation			
	$\begin{cases} 8p + q = 0 \\ p - 8q = 65 \end{cases}$ $p = 1, q = -8$	M1	For equating coefficients of $\cos 2x$ and $\sin 2x$			
	· · · ·	A1	and attempting to solve for p and/or q For correct p and q			
	$PI = \sin 2x - 8\cos 2x$ $\Rightarrow y =$	B1√	For using $GS = CF + PI$, with 2 arbitrary constant			
	$e^{-2x}(C\cos x + D\sin x) + \sin 2x - 8\cos 2x$		in CF and none in PI			
		,				
9						
5 (i)	$y = u - \frac{1}{x} \Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{1}{2}$	M1	For differentiating substitution			
3 (1)	$y = u - \frac{1}{x} \implies \frac{1}{dx} = \frac{1}{dx} + \frac{1}{x^2}$	A1	For correct expression			
	$x^{3} \left(\frac{\mathrm{d}u}{\mathrm{d}x} + \frac{1}{x^{2}} \right) = x \left(u - \frac{1}{x} \right) + x + 1$	M1	For substituting y and $\frac{dy}{dx}$ into DE			
	$\Rightarrow x^2 \frac{\mathrm{d}u}{\mathrm{d}x} = u$	A1 4	For obtaining correct equation AG			
(ii)	METHOD 1 $\int \frac{1}{u} du = \int \frac{1}{x^2} dx \implies \ln ku = -\frac{1}{x}$	M1 A1	For separating variables and attempt at integration For correct integration (<i>k</i> not required here)			
	$ku = e^{-1/x} \implies k\left(y + \frac{1}{x}\right) = e^{-1/x}$	M1 M1	For any 2 of For all 3 of $\begin{cases} k \text{ seen,} \\ \text{exponentiating,} \\ \text{substituting for } u \end{cases}$			
	$\Rightarrow y = Ae^{-1/x} - \frac{1}{x}$	A1 5	For correct solution AEF in form $y = f(x)$			
	METHOD 2					
	$\frac{du}{dx} - \frac{1}{x^2}u = 0 \implies \text{I.F. } e^{\int -1/x^2 dx} = e^{1/x}$	M1	For attempt to find I.F.			
	$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \Big(u \mathrm{e}^{1/x} \Big) = 0$	A1	For correct result			
	$u e^{1/x} = k \implies y + \frac{1}{x} = k e^{-1/x}$	M1 M1	From $u \times I.F. = $, for k seen for substituting for u $ightharpoonup$ in either			
			order			
	$\Rightarrow y = k e^{-1/x} - \frac{1}{x}$	A1	For correct solution AEF in form $y = f(x)$			
9						

4727 Mark Scheme January 2009

6 (i)	METHOD 1			
U (1)	Use 2 of			
	[-4, 2, 0], [0, 0, 3], [-4, 2, 3], [4, -2, 3] or multiples	M1		For finding vector product of 2 appropriate vectors in plane <i>ACGE</i>
	$\mathbf{n} = k [1, 2, 0]$	A 1		For correct n
	Use A[4, 0, 0], C[0, 2, 0], G[0, 2, 3] OR E[4, 0, 3]	M1		For substituting a point in the plane
	r.[1, 2, 0] = 4	A1	4	For correct equation. AEF in this form
	METHOD 2 $\mathbf{r} = [4, 0, 0] + \lambda[-4, 2, 0] + \mu[0, 0, 3]$	M1		For writing plane in 2-parameter form
	$\Rightarrow x = 4 - 4\lambda$, $y = 2\lambda$, $z = 3\mu$	A 1		For 3 correct equations
	x + 2y = 4	M1		For eliminating λ (and μ)
	\Rightarrow r .[1, 2, 0] = 4	A 1		For correct equation. AEF in this form
(ii)	$\theta = \cos^{-1} \frac{ [3, 0, -4] \cdot [1, 2, 0] }{\sqrt{3^2 + 0^2 + 4^2} \sqrt{1^2 + 2^2 + 0^2}}$	B1\ M1		For using correct vectors (allow multiples). f.t. from n
	$\sqrt{3^2 + 0^2 + 4^2} \sqrt{1^2 + 2^2 + 0^2}$	M1		For using scalar product For multiplying both moduli in denominator
	$\theta = \cos^{-1} \frac{3}{5\sqrt{5}} = 74.4^{\circ}$	A1	4	For correct angle
····	(74.435°, 1.299)	3.71		E latinia
(iii)	AM: $(\mathbf{r} =) [4, 0, 0] + t[-2, 2, 3]$	M1 A1		For obtaining parametric expression for <i>AM</i> For correct expression seen or implied
	(or [2, 2, 3] + t[-2, 2, 3])	711		Tor correct expression seem of implied
	$3(4-2t)-4(3t) = 0$ $(or \ 3(2-2t)-4(3+3t) = 0)$	M1		For finding intersection of AM with ACGE
	$t = \frac{2}{3} (or \ t = -\frac{1}{3}) OR \ \mathbf{w} = \left[\frac{8}{3}, \frac{4}{3}, 2\right]$	A 1		For correct t OR position vector
	AW:WM=2:1	A 1	5	For correct ratio
		13	3	
7 (i) (a)	$x + y - a \in \mathbf{R}$	B1		For stating closure is satisfied
	(x*y)*z = (x+y-a)*z = x+y+z-2a	M1		For using 3 distinct elements bracketed both ways
	x*(y*z) = x*(y+z-a) = x+y+z-2a	A1		For obtaining the same result twice for associativity
				SR 3 distinct elements bracketed once,
	$x + e - a = x \implies e = a$	В1		expanded, and symmetry noted scores M1 A1 For stating identity = a
	$x + x^{-1} - a = a \implies x^{-1} = 2a - x$	M1		For attempting to obtain inverse of x
	$x + x = a \rightarrow x = 2a - x$	A 1	6	For obtaining inverse = $2a - x$ <i>OR</i> for showing that inverses exist,
				where $x + x^{-1} = 2a$
(b)	$x + y - a = y + x - a \Rightarrow$ commutative	B1	1	For stating commutativity is satisfied, with justification
	$x \text{ order } 2 \Rightarrow x * x = e \Rightarrow 2x - a = e$	M1		For obtaining equation for an element of order
(c)	$\Rightarrow 2x - a = a \Rightarrow x = a = e$	A1	2	2
	$OR \ x = x^{-1} \Rightarrow x = 2a - x \Rightarrow x = a = e$			For solving and showing that the only solution is the identity (which has order 1)
	⇒ no elements of order 2			OR For proving that there are no self-inverse
				elements (other than the identity)

4727 **Mark Scheme** January 2009 (ii) e.g. $2+1-5=-2 \notin \mathbb{R}^+$ M1For attempting to disprove closure For stating closure is not necessarily satisfied \Rightarrow not closed A1 (0 < x + y, 5 required)e.g. $2 \times 5 - 11 = -1 \notin R^+$ M1 For attempting to find an element with no inverse A1 4 For stating inverse is not necessarily satisfied ⇒ no inverse (x...10 required)13 z may be used for $e^{i\theta}$ throughout 8 (i) $\sin\theta = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right)$ For expression for $\sin\theta$ seen or implied **B**1 For expanding $\left(e^{i\theta} - e^{-i\theta}\right)^{6}$ M1At least 4 terms and 3 binomial coefficients $\sin^6 \theta =$ required. $-\frac{1}{64}\left(e^{6i\theta}-6e^{4i\theta}+15e^{2i\theta}-20+15e^{-2i\theta}-6e^{-4i\theta}+e^{-6i\theta}\right)$ For correct expansion. Allow $\frac{\pm (i)}{64} (\cdots)$ $= -\frac{1}{64} (2\cos 6\theta - 12\cos 4\theta + 30\cos 2\theta - 20)$ M1 For grouping terms and using multiple angles $\sin^6 \theta = -\frac{1}{32} (\cos 6\theta - 6\cos 4\theta + 15\cos 2\theta - 10)$ A1 **5** For answer obtained correctly AG $\cos^6 \theta = OR \sin^6 \left(\frac{1}{2}\pi - \theta\right) =$ For substituting $(\frac{1}{2}\pi - \theta)$ for θ throughout M1 $-\frac{1}{32}(\cos(3\pi-6\theta)-6\cos(2\pi-4\theta)+15\cos(\pi-2\theta)-10)$ For correct unsimplified expression $\cos^6 \theta = \frac{1}{32} (\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10)$ A1 **3** For correct expression with $\cos n\theta$ terms **AEF** $\int_{0}^{\frac{1}{4}\pi} \frac{1}{32} \left(-2\cos 6\theta - 30\cos 2\theta \right) d\theta$ (iii) B1√ For correct integral. f.t. from $\sin^6 \theta - \cos^6 \theta$ For integrating $\cos n\theta$, $\sin n\theta$ or $e^{in\theta}$ $=-\frac{1}{16}\left[\frac{1}{6}\sin 6\theta + \frac{15}{2}\sin 2\theta\right]_{0}^{\frac{1}{4}\pi}$ M1 For correct integration. f.t. from integrand A1√ $=-\frac{11}{24}$ A1 4 For correct answer www

12