Mark Scheme 4727 January 2006

	1	
1 Directions $[1, 1, -1]$ and $[2, -3, 1]$	B1	For identifying both directions (may be implied by working)
$\theta = \cos^{-1} \frac{ [1, 1, -1] \cdot [2, -3, 1] }{\sqrt{3} \sqrt{14}}$	M1	For using scalar product of their direction vectors
$=\cos^{-1}\frac{ -2 }{\sqrt{42}}$	M1	For completely correct process for their angle
= 72.0°, 72° or 1.26 rad	A1 4 4	For correct answer
2 (i) Identities b , 6 Subgroups $\{b, d\}$, $\{6, 4\}$	B1 B1 B1 B1 4	For correct identities For correct subgroups
(ii) $\{a, b, c, d\} \leftrightarrow \{2, 6, 8, 4\}$ or $\{8, 6, 2, 4\}$	B1 B1	For $b \leftrightarrow 6$, $d \leftrightarrow 4$
	B1 3	For $a, c \leftrightarrow 2, 8$ in either order
		SR If B0 B0 B0 then M1 A1 may be awarded for stating the orders of all elements in <i>G</i> and <i>H</i>
	7	
$3 (i) 3y^2 \frac{dy}{dx} = \frac{dz}{dx}$	M1	For differentiating substitution
$\Rightarrow \frac{\mathrm{d}z}{\mathrm{d}x} + 2xz = \mathrm{e}^{-x^2}$	A1	For resulting equation in z and x
Integrating factor $\left(e^{\int 2x dx}\right) = e^{x^2}$	B1 √	For correct IF f.t. for an equation in suitable form
$\Rightarrow \frac{d}{dx} \left(z e^{x^2} \right) OR \frac{d}{dx} \left(y^3 e^{x^2} \right) = 1$	M1	For using IF correctly
$\Rightarrow z e^{x^2} OR y^3 e^{x^2} = x (+c)$	A1	For correct integration ($+c$ not required here)
$\Rightarrow y = (x+c)^{\frac{1}{3}} e^{-\frac{1}{3}x^2}$	A1 6	For correct answer AEF
(ii) As $x \to \infty$, $y \to 0$	B1_1	For correct statement
	7	
4 (i) $\cos \theta = \frac{1}{2} \left(e^{i\theta} + e^{-i\theta} \right)$,	B1	For either expression, seen or implied
$\sin\theta = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right)$	Di	z may be used for $e^{i\theta}$ throughout
$\Rightarrow \cos^2 \theta \sin^4 \theta = \frac{1}{4} \left(e^{i\theta} + e^{-i\theta} \right)^2 \frac{1}{16} \left(e^{i\theta} - e^{-i\theta} \right)^4$		
$= \frac{1}{4} \left(e^{2i\theta} + 2 + e^{-2i\theta} \right) \cdot \frac{1}{16} \left(e^{4i\theta} - 4e^{2i\theta} + 6 - 4e^{-2i\theta} + e^{-4i\theta} \right)$	M1 A1 A1	For expanding terms For the 2 correct expansions SR Allow A1 A0 for $k\left(e^{2i\theta} + 2 + e^{-2i\theta}\right)\left(e^{4i\theta} - 4e^{2i\theta} + 6 - 4e^{-2i\theta} + e^{-4i\theta}\right), \ k \neq \frac{1}{64}$
$= \frac{1}{64} \left(\left(e^{6i\theta} + e^{-6i\theta} \right) - 2 \left(e^{4i\theta} + e^{-4i\theta} \right) - \left(e^{2i\theta} + e^{-2i\theta} \right) + 4 \right)$	M1	For grouping terms and using multiple angles
$= \frac{1}{32} \left(\cos 6\theta - 2\cos 4\theta - \cos 2\theta + 2\right) \mathbf{AG}$	A1 6	For answer obtained correctly

	1	
(ii) $\int_0^{\frac{1}{3}\pi} \cos^2 \theta \sin^4 \theta d\theta =$		
$= \frac{1}{32} \left[\frac{1}{6} \sin 6\theta - \frac{1}{2} \sin 4\theta - \frac{1}{2} \sin 2\theta + 2\theta \right]_0^{\frac{1}{3}\pi}$	M1 A1	For integrating answer to (i) For all terms correct
$= \frac{1}{32} \left[0 + \frac{1}{4} \sqrt{3} - \frac{1}{4} \sqrt{3} + \frac{2}{3} \pi - 0 \right] = \frac{1}{48} \pi$	A1 3	For correct answer
	9	
5 (i)	B1	For correct modulus AEF
EITHER $5 = \sqrt{8} \operatorname{cis}(2k+1)^{\frac{\pi}{4}} \cdot k = 0.1.2.3$		
$z = \sqrt{8}\operatorname{cis}(2k+1)\frac{\pi}{4}, \ k = 0, 1, 2, 3$		
$OR \ z = \sqrt{8} e^{(2k+1)\frac{\pi}{4}i}, k = 0, 1, 2, 3$	B1 2	For correct arguments AEF
(ii)		
$z = 2\sqrt{2} \left\{ \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i, -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i, -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i, \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i \right\}$	B1	For any of $\pm \frac{1}{\sqrt{2}} \pm \frac{1}{\sqrt{2}} i$
z = 2 + 2i, -2 + 2i, -2 - 2i, 2 - 2i	B1	For any one value of z correct
	B1	For all values of z correct AEF cartesian
$(z-\alpha), (z-\beta), (z-\gamma), (z-\delta)$	B1 √ 4	(may be implied from symmetry or factors) f.t., where $\alpha, \beta, \gamma, \delta$ are answers above
(iii) EITHER $(z-(2+2i))(z-(2-2i))$	M1	For combining factors from (ii) in pairs
$\times (z - (-2 + 2i))(z - (-2 - 2i))$	M1	Use of complex conjugate pairs
$= (z^2 + 4z + 8)(z^2 - 4z + 8)$	A1	For correct answer
$OR z^4 + 64 = (z^2 + az + b)(z^2 + cz + d)$	M1	For equating coefficients
$\Rightarrow a + c = 0, b + ac + d = 0, ad + bc = 0, bd = 64$	M1	For solving equations
Obtain $(z^2 + 4z + 8)(z^2 - 4z + 8)$	A1 3	For correct answer
	9	
6 (i) $MB = [2, 1, -2]$, $OF = [4, 1, 2]$	B1	For either vector correct (allow multiples)
MB×OF	M1	For finding vector product of their MB and
= [4, -12, -2] OR k[2, -6, -1]	A1 3	OF For correct vector
(ii) EITHER Find vector product of any		
two of $\pm [2, -1, 2], \pm [0, 0, 2],$	M1	For finding two relevant vector products
$\pm[2,-1,0]$		
and any two of $\pm [4, 0, 2], \pm [4, -1, 0], \pm [0, 1, 2]$		
Obtain $k[1, 2, 0]$	A1	For correct LHS of plane <i>CMG</i>
Obtain $k[1, 4, -2]$	A1	For correct LHS of plane <i>OEG</i>
	M1	For substituting a point into each equation
x + 2y = 2 and $x + 4y - 2z = 0$	A1	For both equations correct AEF
OR Use $ax + by + cz = d$ with	M1	For use of cartesian equation of plane
coordinates of C, M, G OR O, E, G substituted		- •
Obtain $a:b:c=1:2:0$ for CMG	A1	For correct ratio
Obtain $a:b:c=1:4:-2$ for OEG	A1	For correct ratio
	M1	For substituting a point into each equation
x + 2y = 2 and $x + 4y - 2z = 0$	A1 5	For both equations correct AEF

		•
(iii) EITHER Put x, y OR $z = t$ in planes OR evaluate $k[1, 2, 0] \times k[1, 4, -2]$	M1	For solving plane equations in terms of a parameter <i>OR</i> for finding vector product of
Ohtoin n. a. h. vyhona		normals to planes from (ii)
Obtain $\mathbf{r} = \mathbf{a} + t\mathbf{b}$ where $\mathbf{a} = [0, 1, 2], [2, 0, 1] OR [4, -1, 0]$	A1	Obtain a correct point AEF
$\mathbf{b} = k[-2, 1, 1]$	A1 3	Obtain correct direction AEF
	111	South Concest uncestion 1222
7 (i) $(x^{-1}ax)^m = (x^{-1}ax)(x^{-1}ax)(x^{-1}ax)$	M1	For considering powers of $x^{-1}ax$
$= x^{-1}a a \dots a x, \text{ associativity, } xx^{-1} = e$	A1 A1	For using associativity and inverse properties
$= x^{-1}a^m x = x^{-1}e x$ when $m = n$,	B1	For using order of a correctly
not m < n		
$=x^{-1}x$	A1	For using property of identity
$=e \implies \text{order } n$	A1 6	For correct conclusion
(ii) <i>EITHER</i> $(x^{-1}ax)z = e$	M1	For attempt to solve for z AEF
$\Rightarrow axz = xe = x \implies xz = a^{-1}x$	A1	For using pre- or post multiplication
$\Rightarrow z = x^{-1}a^{-1}x$	A1	For correct answer
OR Use $(pq)^{-1} = q^{-1}p^{-1}$		
$OR(pqr)^{-1} = r^{-1}q^{-1}p^{-1}$	M1	For applying inverse of a product of elements
State $(x^{-1})^{-1} = x$	A1	For stating this property
Obtain $x^{-1}a^{-1}x$	A1 3	For correct answer with no incorrect working
		SR correct answer with no working scores B1 only
(iii) $ax = xa \implies x = a^{-1}xa$	M1	Start from commutative property for ax
$\Rightarrow xa^{-1} = a^{-1}x$	A1 2	Obtain commutative property for $a^{-1}x$
8 (i) $m^2 + 2km + 4 = 0$	M1	For stating and attempting to solve auxiliary eqn
$\Rightarrow m = -k \pm \sqrt{k^2 - 4}$	A1 2	For correct solutions, at any stage AEF
(a) $x = e^{-kt} \left(A e^{\sqrt{k^2 - 4}t} + B e^{-\sqrt{k^2 - 4}t} \right)$	M1	For using $e^{f(t)}$ with distinct real roots of
	A1 2	aux eqn
		For correct answer AEF
(b) $x = e^{-kt} \left(A e^{i\sqrt{4-k^2}t} + B e^{-i\sqrt{4-k^2}t} \right)$	M1	For using $e^{f(t)}$ with complex roots of aux
		eqn This form may not be seen explicitly but if stated as final answer earns M1 A0
$x = e^{-kt} \left(A' \cos \sqrt{4 - k^2} t + B' \sin \sqrt{4 - k^2} t \right)$	A1 2	For correct answer
OR $x = e^{-kt} \left(C' \frac{\cos(\sqrt{4-k^2} t + \alpha)}{\sin(\sqrt{4-k^2} t + \alpha)} \right)$		
(c) $x = e^{-2t} (A'' + B''t)$	M1 A1 2	For using $e^{f(t)}$ with equal roots of aux eqn For correct answer. Allow k for 2

(ii)(a) $x = B'e^{-t} \sin \sqrt{3} t$ $\dot{x} = B'e^{-t} \left(\sqrt{3}\cos \sqrt{3} t - \sin \sqrt{3} t\right)$	B1 √ M1 A1 √	For using $t = 0$, $x = 0$ correctly. f.t. from (b) For differentiating x For correct expression. f.t. from their x
$t = 0, \dot{x} = 6 \Rightarrow B' = 2\sqrt{3}, \ x = 2\sqrt{3}e^{-t}\sin\sqrt{3}t$	A1 4	For correct solution AEF SR $$ and AEF OK for $x = C'e^{-t}\cos\left(\sqrt{3}t + \frac{1}{2}\pi\right)$
(b) $x \rightarrow 0$	B1	For correct statement
$e^{-t} \rightarrow 0$ and sin() is bounded	B1 2	For both statements