

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Further Pure Mathematics FP3 (6669/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA038879
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PMT

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.

PMT

- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

PMT

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question	Scheme		Marks
	$P(2, 1, 3)$ and $\mathbf{r}.(\mathbf{i} - 2\mathbf{j} - \mathbf{k}) = 3$		
1.(a)	l is parallel to $i-2j-k$	An appreciation that $\mathbf{i} - 2\mathbf{j} - \mathbf{k}$ is the direction of the line (may be implied).	M1
	$\mathbf{r}'' = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k} + t(\mathbf{i} - 2\mathbf{j} - \mathbf{k})$ or $(\mathbf{r} - (2\mathbf{i} + \mathbf{j} + 3\mathbf{k})) \times (\mathbf{i} - 2\mathbf{j} - \mathbf{k}) = 0$ or $\mathbf{r} \times (\mathbf{i} - 2\mathbf{j} - \mathbf{k}) = (2\mathbf{i} + \mathbf{j} + 3\mathbf{k}) \times (\mathbf{i} - 2\mathbf{j} - \mathbf{k})$ or $\mathbf{r} \times (\mathbf{i} - 2\mathbf{j} - \mathbf{k}) = 5\mathbf{i} + 5\mathbf{j} - 5\mathbf{k}$	A correct vector equation in any form. (Allow any multiple of the direction vector.)	A1
			(2)
(b)	$ \begin{pmatrix} 2+t \\ 1-2t \\ 3-t \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} = 3 $	Substitutes a parametric form of their line from part (a) into the equation of the plane. This statement is sufficient.	M1
	2+t-2(1-2t)-(3-t)=3	Correct equation (allow unsimplified)	A1
	$2+t-2+4t-3+t=3 \Rightarrow t = \dots$	Solves to find a value for t Dependent on the first M	dM1
	$t=1 \Rightarrow l \text{ meets } \Pi \text{ at } \mathbf{r} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$	Correct position vector (allow as coordinates (3, -1, 2))	A1
			(4)
	$PQ = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k} - (2\mathbf{i} + \mathbf{j} + 3\mathbf{k}) $		
(c)	$= \mathbf{i} - 2\mathbf{j} - \mathbf{k} = \sqrt{1^2 + 2^2 + 1^2}$	Attempts the vector <i>PQ</i> or <i>QP</i> and correct Pythagoras.	M1
Way 1	$=\sqrt{6}$	Allow awrt 2.45 or $\frac{6}{\sqrt{6}}$	A1
			(2)
	$t = "1" \Rightarrow \overrightarrow{PQ} = "1" \times (\mathbf{i} - 2\mathbf{j} - \mathbf{k})$		
(c) Way 2	= $ \mathbf{i} - 2\mathbf{j} - \mathbf{k} = \sqrt{1^2 + 2^2 + 1^2}$	Attempts the vector <i>PQ</i> using their value for <i>t</i> and their normal vector and correct Pythagoras.	M1
-	$=\sqrt{6}$	Allow awrt 2.45 or $\frac{6}{\sqrt{6}}$	A1
			(2)
			To4-10
			Total 8

Question	s	cheme		Marks
2.(a)	$\mathbf{M}\mathbf{M}^{\mathrm{T}} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 4 & 1 \\ 0 & 5 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 5 \\ 2 & 1 & 0 \end{pmatrix}$	product of a or attempts	IM ^T or M ^T M or scalar t least one pair of columns magnitude of at least one inds detM or attempts M ⁻¹	M1
	$= \begin{pmatrix} 5 & 2 & 0 \\ 2 & 17 & 20 \\ 0 & 20 & 25 \end{pmatrix} \neq \mathbf{I}$ ∴ M not orthogonal.	or scalar pro or $det \mathbf{M} \neq \pm$ $\mathbf{M}^{T} \underline{\mathbf{and}}$ cor \mathbf{MM}^{T} or \mathbf{M} may be erro correct work	oduct $\neq 0$ or magnitude $\neq 1$ 1.1 (must see \pm) or $\mathbf{M}^{-1} \neq$ 1.1 (not see \pm) or $\mathbf{M}^{-1} \neq$ 1.2 nclusion. Note that not all of \mathbf{M}^{-1} is necessary and there is but there must be some at (at least one correct ment). NB det $\mathbf{M} = -5$. See	A1
a >		1		(2)
(b)	$\begin{vmatrix} 1-\lambda & 0 & 2\\ 0 & 4-\lambda & 1\\ 0 & 5 & -\lambda \end{vmatrix} = 0$	other bra	ement is sufficient. (allow ckets provided the ant is implied later)	M1
	$(1-\lambda)[(4-\lambda)(-\lambda)-3]$	5(-0(0-0))	+2(0-0)=0	M1
	Attempts characteristic equation (= Allow one slip e.g. – us			
	$(1-\lambda)((4-\lambda)(-\lambda)-5) = 0$	0		
	$\lambda = 1$		$\lambda = 1$ with no errors	A1cso
	$\lambda^2 - 4\lambda - 5 = 0$ $\Rightarrow \lambda = 5, \lambda = -1$ M1: Attempts to find the other 2 eigenvalues from their characteristic equation by solving a 3 term quadratic. A1: $\lambda = 5, \lambda = -1$		M1A1	
	111. 70	3,70		(5)
(c)	$ \begin{pmatrix} 1 & 0 & 2 \\ 0 & 4 & 1 \\ 0 & 5 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{or} \begin{pmatrix} 0 & 0 & 2 \\ 0 & 3 & 1 \\ 0 & 5 & -1 \end{pmatrix} $	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	A correct statement for the eigenvalue 1. (May be implied by correct equations)	M1
	$\alpha(\mathbf{i}+0\mathbf{j}+0\mathbf{k})$ where α is a co	onstant	Any vector of this form.	A1
(3)		7.f.1 A		(2)
(d)	$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 4 & 1 \\ 0 & 5 & 0 \end{pmatrix} \begin{pmatrix} t \\ 2t \\ -t \end{pmatrix} = \begin{pmatrix} -t \\ 7t \\ 10t \end{pmatrix}$	parametric line by M. x compone through t	ct image vector with or	M1A1
	Cartesian equation $\frac{x}{-1} = \frac{y}{7} = \frac{z}{10}$	M1: Correction of the cartesian of the c	ect method to convert to form of a straight line nrough the origin. ct equations (any multiple)	M1A1
				(4) Total 13
				10tai 13

Question	Scheme		Marks
3.(a)	$x^2 - 2x + 3 = (x-1)^2 + 2$	M1: Attempt to complete the square. Allow $(x-1)^2 + k, k \neq 0$ A1: Correct expression	M1A1
	$\int \frac{1}{\sqrt{(x-1)^2 + 2}} dx = \alpha \operatorname{arsinh}(f(x))$	Allow $\alpha \ln \left(f(x) + \sqrt{(f(x))^2 + \beta} \right) (\beta > 0)$	M1
	$\left[\operatorname{arsinh} \left(\frac{x-1}{\sqrt{2}} \right) \right]_{1}^{2} = \operatorname{arsinh} \frac{1}{\sqrt{2}}$	Any equivalent exact form. Allow $\ln \left(\frac{1+\sqrt{3}}{\sqrt{2}} \right)$ but no other	A1
	-	terms e.g. arsinh(0)	(4)
(b)	$e^{2x} \sinh x = e^{2x} \left(\frac{e^x - e^{-x}}{2} \right)$	Substitutes the correct exponential of sinh <i>x</i>	(4) M1
	$\frac{1}{2}(\mathbf{e}^{3x}-\mathbf{e}^x)$	Correct expression with powers of e combined.	A1
	$\int_0^1 \frac{1}{2} (e^{3x} - e^x) dx = \left[\frac{1}{2} \left(\frac{1}{3} e^{3x} - e^x \right) \right]_0^1$ $= \frac{1}{2} \left(\frac{1}{3} e^3 - e^1 \right) - \frac{1}{2} \left(\frac{1}{3} e^0 - e^0 \right)$	$\int e^{px} dx = qe^{px} \text{ at least once and}$ some correct use of the limits 0 and 1 and subtracts the right way round.	M1
	$=\left(\frac{e^3}{6} - \frac{e}{2} + \frac{1}{3}\right)$	Any exact equivalent (allow e ¹) but all like terms collected but isw following a correct answer.	A1
			(4)
			Total 8
	(b) Integration by	-	
	$I = \left[\frac{1}{2}e^{2x}\sinh x\right]_0^1 - \int_0^1 \frac{1}{2}e^{2x}\cosh x dx = \left[\frac{1}{2}e^{2x}\right]_0^2 dx$		
	$\frac{3}{4}I = \left[\frac{1}{2}e^{2x}\sinh x\right]_0^1 - \left[$	$\frac{1}{4}e^{2x}\cosh x \Big]_0^1$	
	M1: Parts twice in the c		
	A1: A correct expression for <i>I</i> or		
	$\int_0^1 e^{2x} \sinh x dx = \frac{4}{3} \left(\frac{1}{2} e^2 \sinh 1 - \frac{1}{3} \right)^2$	$\frac{1}{4}e^{2}\cosh 1 + \frac{1}{4}M1A1$ oe	
	M1: Correct use of limits having A1: Correct expre		
	(b) Integration by		
	$I = \left[e^{2x} \cosh x \right]_0^1 - \int_0^1 2e^{2x} \cosh x dx = \left[e^{2x} \cosh x dx \right]_0^1 = \left[e^{2x} \cosh x dx \right$	-	
	$-3I = \left[e^{2x} \cosh x \right]_0^1 -$		
	M1: Parts twice in the correct direction		
	A1: A correct expression for <i>I</i> or any constant multiple of <i>I</i>		
	$\int_0^1 e^{2x} \sinh x dx = -\frac{1}{3} \left(e^2 \cot x \right)$		
	M1: Correct use of limits having A1: Correct expre		

Question	Sche	eme	Marks	
4.(a)	$\tanh x = \frac{\frac{e^x - e^{-x}}{2}}{\frac{e^x + e^{-x}}{2}} \text{ or }$	M1		
	Use of the correct expo			
	$1 - \tanh^2 x = 1 - \left(\frac{e^x - e^{-x}}{e^x + e^{-x}}\right)^2 = \frac{e^x}{e^x + e^{-x}}$	$\frac{(e^{2x} + e^{-2x} + 2) - (e^{2x} + e^{-2x} - 2)}{(e^x + e^{-x})^2}$	d M1	
	Attempts $1 - \tanh^2 x$ with their $\tanh x$, obtains a common denominator and		
	expands the numerator correctly – thr	ree terms from $(a+b)^2$ at least once		
	$= \frac{2e^{x} \cdot 2e^{-x}}{(e^{x} + e^{-x})^{2}}$ $= \frac{4}{(e^{x} + e^{-x})^{2}} = \operatorname{sec} h^{2} x^{*}$			
	$= \frac{4}{(e^x + e^{-x})^2} = \sec h^2 x^*$ Correct completion with no errors			
	Allow candidates to process both sides and 'meet in the middle' Note that it is possible to start from $\operatorname{sech}^2 x$ and obtain $1 - \tanh^2 x$ by reversing the above work			
-			(3)	
(b)	Ignore any imagina	ary solutions in (b)		
	$4\left(\frac{e^{x}-e^{-x}}{2}\right)-3\left(\frac{e^{x}+e^{-x}}{2}\right)=3$	Substitutes the correct exponential forms for sinh <i>x</i> and cosh <i>x</i>	M1	
	$e^x - 7e^{-x} = 6$			
	$e^{x} - 7e^{-x} = 6$ $e^{2x} - 6e^{x} - 7 = 0$	Obtains a quadratic in e ^x	M1	
	$(e^x + 1)(e^x - 7) = 0 \Longrightarrow e^x = \dots$	Attempt to solve their 3TQ in e^x as far as $e^x =$	M1	
	$x = \ln 7 \text{ or awrt } 1.95$		A1	
			(4)	
			Total 7	

	Alternati	ives for (b)	
		$\Rightarrow 4\sinh x = 3 + 3\cosh x$	M1
		$8\cosh x - 25 = 0$	
	1	y and obtains a quadratic in sinhx	
	$7\cosh^{2} x - 18\cosh x - 25 = 0 \Rightarrow (7\cosh x - 25)(\cosh x + 1) = 0$ $\cosh x = \frac{25}{7} \Rightarrow \frac{e^{x} + e^{-x}}{2} = \frac{25}{7} \Rightarrow 7e^{2x} - 50e^{x} + 7 = 0$		
	Uses the correct form of coshx in term	ns of exponentials to obtain a 3TQ in e ^x	M1
	$7e^{2x} - 50e^x + 7 = 0 \Longrightarrow (7e^{-x})$	$(e^x - 1)(e^x - 7) = 0 \Rightarrow e^x = \dots$	M1
	Attempt to solve the	ir 3TQ as far as $e^x =$	
	$x = \ln 7 \text{ or awrt } 1.95$	No other values	A1
		$\Rightarrow 4\sinh x - 3 = 3\cosh x$	M1
	$\Rightarrow 7 \sinh^2 x$	$-24\sinh x = 0$	IVII
	M1: Attempt to square correctly and obtains a quadratic in coshx		
	$7\sinh^2 x - 24\sinh x = 0 \Rightarrow \sinh x (7\sinh x - 24) = 0$		
	$\sinh x = \frac{24}{7} \Rightarrow \frac{e^x - e^{-x}}{2} = \frac{24}{7} \Rightarrow 7e^{2x} - 48e^x - 7 = 0$		
	Uses the correct form of $\sinh x$ in terms of exponentials to obtain a 3TQ in e^x		M1
	$7e^{2x} - 48e^x - 7 = 0 \Rightarrow (7e^x + 1)(e^x - 7) = 0 \Rightarrow e^x =$		M1
	Attempt to solve their 3TQ as far as $e^x =$		
	$x = \ln 7$ or awrt 1.95 No other values		
	$4\sinh x - 3\cosh x = 3$	\Rightarrow 4 tanh $x - 3 = 3$ sech x	M1
	\Rightarrow 25 tanh ² $x - 24$ tanh $x = 0$		IVII
	M1: Attempt to square correctly	y and obtains a quadratic in tanhx	
	$25 \tanh^2 x - 24 \tanh x = 0 = 0$	$\Rightarrow \tanh x \left(25 \tanh x - 24 \right) = 0$	
	$\tanh x = \frac{24}{25} \Longrightarrow \frac{e^x - e^x}{e^x + e^x}$	$\frac{e^{-x}}{e^{-x}} = \frac{24}{25} \Longrightarrow e^{2x} = 49$	
	Uses the correct form of tanhx in term	ns of exponentials to obtain a 2TQ in e ^x	M1
	$e^{2x} = 49 \Rightarrow e^x = \dots$		M1
	Attempt to solve the		
	$x = \ln 7$ or awrt 1.95	No other values	A1

Question	Scheme	Marks
5.	$\frac{dy}{dx} = \underbrace{\left(\frac{1}{1 - \frac{x^2}{1 + x^2}}\right) \cdot \underbrace{\left(\frac{(1 + x^2)^{\frac{1}{2}} - x^2(1 + x^2)^{-\frac{1}{2}}}{(1 + x^2)}\right)}_{\text{NB}} \underbrace{\frac{M1}{1 - \frac{x^2}{1 + x^2}} \cdot \underbrace{\frac{M1}{1 + x^2}}_{\text{Ul} = \frac{1}{1 - \frac{x^2}{1 + x^2}}} \cdot \underbrace{\frac{M1}{1 - \frac{x^2}{1 - x^2}}}_{\text{M1} : \text{Correct quotient or product rule on } \frac{x}{\sqrt{1 + x^2}}}_{\text{A1} : \text{Completely correct expression}}$	<u>M1M</u> A1
	$=\frac{1}{\sqrt{1+x^2}}$ **ag** Correct solution with no errors seen	A1 (4)
		Total 4
	Alternative 1	
	$y = \operatorname{artanh} \frac{x}{\sqrt{1+x^2}} \Rightarrow \tanh y = \frac{x}{\sqrt{1+x^2}}$ $\operatorname{sech}^2 y \frac{dy}{dx} = \left(\frac{(1+x^2)^{\frac{1}{2}} - x^2(1+x^2)^{-\frac{1}{2}}}{(1+x^2)} \right)$	
	$\operatorname{sech}^{2} y \frac{\mathrm{d}y}{\mathrm{d}x} = \left(\frac{(1+x^{2})^{\frac{1}{2}} - x^{2}(1+x^{2})^{-\frac{1}{2}}}{(1+x^{2})} \right)$	
	$\frac{dy}{dx} = \underbrace{\left(\frac{1}{1 - \frac{x^2}{1 + x^2}}\right) \cdot \underbrace{\frac{(1 + x^2)^{\frac{1}{2}} - x^2(1 + x^2)^{-\frac{1}{2}}}{(1 + x^2)}}_{\text{M1: Divides by the correct form of sech}^2 y \text{ or their simplified sech}^2 y \text{ in terms of } x$ $\underbrace{\frac{M1: \text{Divides by the correct form of sech}^2 y \text{ or their simplified sech}^2 y \text{ in terms of } x$ $\underbrace{\frac{M1: \text{Correct quotient or product rule}}{\text{A1: Completely correct expression}}$	<u>M1M</u> A1
	Then as above	
	Alternative 2 $y = \operatorname{artanh} \frac{x}{\sqrt{1+x^2}} \Rightarrow \tanh y = \frac{x}{\sqrt{1+x^2}} \Rightarrow \tanh^2 y = \frac{x^2}{1+x^2}$	
	$2 \tanh y \operatorname{sech}^{2} y \frac{\mathrm{d}y}{\mathrm{d}x} = \left(\frac{2x(1+x^{2})-2x^{3}}{(1+x^{2})^{2}}\right)$	
	$\frac{dy}{dx} = \left(\frac{1}{1 - \frac{x^2}{1 + x^2}}\right) \times \frac{(1 + x^2)^{\frac{1}{2}}}{2x} \times \frac{2x(1 + x^2) - 2x^3}{\frac{(1 + x^2)^2}{2x}}$	<u>M1M</u> A1
	M1: Divides by the correct form of sech ² y and tanhy in terms of x M1: Correct quotient or product rule A1: Completely correct expression	
	Then as above	

Question	Scheme		Marks
	In this question condone the use of a and/or b for α and β		
6(a)	Gradient $m = \frac{2\sin\beta - 2\sin\alpha}{3\cos\beta - 3\cos\alpha}$	Correct attempt at chord gradient – do not allow slips unless a correct method is clear	M1
	$y - 2\sin \alpha = m(x - 3\cos \alpha)$ or $y - 2\sin \beta = m(x - 3\cos \beta)$ or $y = mx + c$ and attempts to find c using P or Q	A correct straight line method using their chord gradient and the point <i>P</i> or the point <i>Q</i>	M1
	$y - 2\sin\alpha = \frac{2\sin\beta}{3\cos\beta}$ $y - 2\sin\beta = \frac{2\sin\beta}{3\cos\beta}$	3 603 60	
	$y - 2\sin \beta = \frac{2\sin \beta}{3\cos \beta}$ $y - 2\sin \alpha = \frac{4\cos\frac{\alpha+\beta}{2}}{-6\sin\frac{\alpha+\beta}{2}}$		A1
	$y = \frac{2\sin\beta - 2\sin\alpha}{3\cos\beta - 3\cos\alpha}x + 2\sin\alpha - \frac{3\cos\alpha(2\sin\beta - 2\sin\alpha)}{3\cos\beta - 3\cos\alpha}$ $y = -\frac{2\cos\frac{\alpha+\beta}{2}}{3\sin\frac{\alpha+\beta}{2}}x + 2\sin\alpha + \frac{2\cos\alpha\cos\frac{\alpha+\beta}{2}}{\sin\frac{\alpha+\beta}{2}}$		
	A correct equation for the chord in any form .		
	$3y\sin\frac{1}{2}(\alpha+\beta) + 2x\cos\frac{1}{2}(\alpha+\beta) = 6(\cos\alpha\cos\frac{1}{2}(\alpha+\beta) + \sin\alpha\sin\frac{1}{2}(\alpha+\beta))$ or		
	$3y\sin\frac{1}{2}(\alpha+\beta) + 2x\cos\frac{1}{2}(\alpha+\beta) = 6(c)$		
	$\frac{x}{3}\cos\frac{1}{2}(\alpha+\beta) + \frac{y}{2}\sin\frac{1}{2}(\alpha+\beta) = \cos\frac{1}{2}(\alpha-\beta) **ag**$		A1cso
	This is cso – there must no errors in sufficient working must be shown to	justify the printed answer but allow	
	$\cos\beta\cos\frac{1}{2}(\alpha+\beta)+\sin\beta$	$\frac{\sin(-(\alpha+\beta))}{2} = \cos(\frac{-(\alpha+\beta)}{2})$	
(b)	$\left(\frac{3\cos\alpha+3\cos\beta}{2},\right.$,	
	$(3\cos\frac{1}{2}(\beta+\alpha)\cos\frac{1}{2}(\beta-\alpha),$		B1
	$(3\cos\frac{1}{2}(\alpha+\beta)\cos\frac{1}{2}(\alpha-\beta),$		
	Correct coordinates of Coordinates must be in this order b	- ·	

Question	Scheme	Marks	
(c)	Centre of chord is		
	$(3\cos\frac{1}{2}(\beta+\alpha)\cos\frac{1}{2}(\beta-\alpha), 2\sin\frac{1}{2}(\beta+\alpha)\cos\frac{1}{2}(\beta-\alpha))$		
	Attempt factor formulae on both coordinates of mid-point at any stage in (c)	M1	
	May be implied by their $\pm \frac{y}{x}$ below		
	$\pm \frac{y}{x} = \pm \frac{2\sin\frac{1}{2}(\beta + \alpha)\cos\frac{1}{2}(\beta - \alpha)}{3\cos\frac{1}{2}(\beta + \alpha)\cos\frac{1}{2}(\beta - \alpha)} \left(= \pm \frac{2\sin\frac{1}{2}(\beta + \alpha)}{3\cos\frac{1}{2}(\beta + \alpha)} \right)$		
	Or	dM1A1	
	$\pm \frac{x}{y} = \pm \frac{3\cos\frac{1}{2}(\beta + \alpha)\cos\frac{1}{2}(\beta - \alpha)}{2\sin\frac{1}{2}(\beta + \alpha)\cos\frac{1}{2}(\beta - \alpha)} \left(= \pm \frac{3\cos\frac{1}{2}(\beta + \alpha)}{2\sin\frac{1}{2}(\beta + \alpha)} \right)$		
	M1: Obtains an expression for k or $-k$ or $\frac{1}{k}$ or $-\frac{1}{k}$		
	Dependent on the previous M1 (factor formulae must have been used)		
	A1: Correct expression in any form		
	$m = -\frac{2\cos\frac{1}{2}(\beta + \alpha)}{3\sin\frac{1}{2}(\beta + \alpha)}$ Must be seen or used in (c)	B1	
	$\frac{\sin\frac{1}{2}(\beta+\alpha)}{\cos\frac{1}{2}(\beta+\alpha)} = -\frac{2}{3m}\operatorname{So}\frac{y}{x} = \frac{2}{3}\left(-\frac{2}{3m}\right) \Longrightarrow k = \frac{4}{9m}$	A1cso	
		(5)	
		Total 10	

Question	Scho	eme	Marks
7.(a)	αx	Or $px + qy \frac{dy}{dx} = 0$	M1
	Attempts to differentiate explicitly or in		
	$1 + \left(\frac{dy}{dx}\right)^2 = 1 + \frac{x^2}{r^2 - x^2} \text{ or } 1 + \frac{x^2}{y^2}$	Substitutes their derivative into $1 + \left(\frac{dy}{dx}\right)^2$	M1
	$= \frac{r^2 - x^2 + x^2}{r^2 - x^2} = \frac{r^2}{r^2 - x^2} *$	cso	A1*
	This is cso and so there must be no err	ors e.g. $\frac{dy}{dx} = \frac{x}{y}$ could give the correct	
	answer but loses the A1 but allow	to show equivalence of lhs and rhs	(3)
(b)		M1: Use of $\int y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$	(3)
	$S = (2\pi) \int y \sqrt{\frac{r^2}{r^2 - x^2}} \mathrm{d}x$	using their answer to part (a) (must be y and not y^2) 2π not required here A1: Correct expression including 2π (may be implied by later work but must appear before any integration)	M1A1
	$= (2\pi) \int \sqrt{r^2 - x^2} \sqrt{\frac{r^2}{r^2 - x^2}} \mathrm{d}x$	Substitutes for <i>y</i> in terms of <i>x</i> . Dependent on first M.	d M1
	$= \left[2\pi r x\right]_{-r}^{r} \text{ or } \left[2\pi r x\right]_{0}^{r}$	Substitutes the limits r and $-r$ or 0 and r into an expression of the form $k\pi rx$ and subtracts. The use of the 0 limit can be taken on trust if omitted. Dependent on both previous method marks.	ddM1
	If they reach $2\pi r^2$ correctly then	double, then some justification is	
	needed e.g. some m	ention of symmetry	
	$=4\pi r^2 *$	cso	A1 (5)
	Note that $S = 2 \times 2\pi \int_0^r y \sqrt{\frac{r^2}{r^2 - x^2}}$		(5)
	score full marks as could the co	rrect use of $S = (2\pi) \int y \sqrt{\frac{r^2}{y^2}} dx$	
(c)	$arc length = \frac{\pi}{2}$	Ignore any working	B1
	-		(1)
			Total 9

Question	Scheme		
8.(a)	$\mathbf{OA} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \mathbf{OB} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \mathbf{OC} = \mathbf{AB} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	$= \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, \mathbf{BC} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \mathbf{AC} = \begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix}$	
	$\mathbf{AB} \times \mathbf{AC} = -\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ Or e.g. $\mathbf{BA} \times \mathbf{BC} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}$	M1: Attempt vector product for two sides of the triangle. If the method is unclear, at least 2 components must be correct. A1: Correct vector	M1A1
	Area ABC = $\frac{1}{2}\sqrt{1^2 + 1^2 + 2^2}$	Attempts $\frac{1}{2}$ their $\mathbf{AB} \times \mathbf{AC}$ Dependent on the first M	dM1
	$\frac{1}{2}\sqrt{6}$	Accept equivalents or awrt 1.22	A1
	Note that triangles OAB and OBC h It must be tria		
			(4)
(b)	$\mathbf{b} \times \mathbf{c} = (\mathbf{i} + \mathbf{j} + \mathbf{k}) \times (2\mathbf{j} + \mathbf{k}) = -\mathbf{i} - \mathbf{j} + 2\mathbf{k}$	Attempt $\mathbf{b} \times \mathbf{c}$. If the method is unclear, at least 2 components must be correct.	M1
	$= \left(\frac{1}{6}\right)(\mathbf{i} - \mathbf{j}).(-\mathbf{i} - \mathbf{j} + 2\mathbf{k}) = \left(\frac{1}{6}\right)(-1 + 1) = 0$	M1: Attempt scalar product of a with their b × c to obtain a number not a vector. A1: Obtains = 0 with no errors (allow omission of $\frac{1}{6}$ for all 3 marks) Just = a .(- i - j + 2 k) = 0 would lose the A1	M1A1
			(3)
	Alterna	tive	
	$ (\mathbf{a}.\mathbf{b} \times \mathbf{c} =) \begin{vmatrix} 1 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{vmatrix} $	Writes this statement (allow other brackets provided the determinant is implied later)	M1
	=(1-2)+1(1)-0=0	M1: Clear attempt at determinant A1: Obtains = 0 with no errors (allow omission of $\frac{1}{6}$ for all 3 marks)	M1A1
(c)	Volume of tetrahedre $\mathbf{a} = \mathbf{b} - \mathbf{c}$ oe or \mathbf{b} \mathbf{x} \mathbf{c} is perpendicular to \mathbf{a} All vectors/points lie OABC is a pare \mathbf{a} , \mathbf{b} and \mathbf{c} are linear \mathbf{c} .	c = b - a oe or a is parallel to CB in the same plane allelogram	B1
	Do not isw – ii there are contradictor	y or wrong statements award bo	<u> </u>
	Do not isw – ii there are contradictor	y or wrong statements award bo	(1)

Question	Scheme		Marks
9(a)	$\int (x^2 + 1)^{-n} dx = x(x^2 + 1)^{-n} + \int xn(x^2 + 1)^{-n-1} 2x dx$		
	M1: Integration by parts in A1: Correct ex	pression	
	(If the parts formula is not quoted and the	expression is wrong, score M0A0)	
	$= x(x^{2}+1)^{-n} + 2n \int x^{2} (x^{2}+1)^{-n-1} dx$		
	$= x(x^{2}+1)^{-n} + 2n\int (x^{2}+1)^{-n} - (x^{2}+1)^{-n-1} dx$	Use of $x^2 = x^2 + 1 - 1$ or equivalent. Dependent on the previous method mark.	dM1
	$I_n = x(x^2 + 1)^{-n} + 2nI_n - 2nI_{n+1}$	Correctly replaces $\int (x^2 + 1)^{-n} dx \text{ and } \int (x^2 + 1)^{-n-1} dx \text{ by }$ $I_n \text{ and } I_{n+1}.$ Dependent on both previous method marks.	ddM1
	$I_{n+1} = \frac{x(x^2+1)^{-n}}{2n} + \frac{2n-1}{2n}I_n$	Correct completion to the printed answer with no errors .	A1cso
			(5)
(b)	$I_2 = \frac{x(x^2+1)^{-1}}{2} + \frac{1}{2}I_1$	Correct application of the given reduction formula using $n = 1$ only	M1
	$I_1 = \int \frac{\mathrm{d}x}{x^2 + 1} = \arctan x (+C)$	$I_1 = k \arctan x $ (must be x and not just for arctan)	M1
	$I_2 = \frac{x}{2(x^2+1)} + \frac{1}{2}\arctan x(+C)$	Cao (constant not needed)	A1
			(3)
			Total 8

Extra Notes

PMT

2. (a)
$$\mathbf{M}^{-1} = \frac{1}{5} \begin{pmatrix} 5 & -10 & 8 \\ 0 & 0 & 1 \\ 0 & 5 & -4 \end{pmatrix}$$

$$\mathbf{M}^{\mathrm{T}} \mathbf{M} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 41 & 4 \\ 2 & 4 & 5 \end{pmatrix}$$

3. (b) Parts once then exponentials

$$I = \left[\frac{1}{2}e^{2x}\sinh x\right]_0^1 - \int_0^1 \frac{1}{2}e^{2x}\cosh x dx = \left[\frac{1}{2}e^{2x}\frac{e^x - e^{-x}}{2}\right]_0^1 - \int_0^1 \frac{1}{2}e^{2x}\frac{e^x + e^{-x}}{2}dx$$

M1 integrates by parts and writes coshx as exponentials

A1 Correct expression

$$= \left[\frac{1}{2}e^{2x}\frac{e^{x}-e^{-x}}{2}\right]_{0}^{1} - \left[\frac{1}{12}e^{2x} + \frac{1}{4}e^{x}\right]_{0}^{1} = \left[\frac{1}{2}\left(\frac{1}{3}e^{3x}-e^{x}\right)\right]_{0}^{1} = = \frac{1}{2}\left(\frac{1}{3}e^{3}-e^{1}\right) - \frac{1}{2}\left(\frac{1}{3}e^{0}-e^{0}\right)$$

M1 $\int e^{px} dx = qe^{px}$ at least once and correct use of the limits 0 and 1

$$=\left(\frac{e^3}{6} - \frac{e}{2} + \frac{1}{3}\right) A1$$

Any exact equivalent (allow e¹) but all like terms collected but isw following a correct answer.

PMT