

Mark Scheme (Results)

Summer 2013

GCE Further Pure Mathematics 3 (6669/01)

Question Number	Sc	heme	Marks
	Mark (a) an	nd (b) together	
1. (a) & (b)	$ae = 13$ and $a^2(e^2 - 1) = 25$	Sight of both of these (can be implied by their work) (allow \pm ae $= \pm 13$ or \pm ae $= 13$ or ae $= \pm 13$)	B1
	Solves to obtain $a^2 = \dots$ or $a = \dots$	Eliminates <i>e</i> to reach $a^2 = \dots$ or $a = \dots$	M1
	<i>a</i> = 12	Cao (not ± 12) unless -12 is rejected	Al
	<i>e</i> = 13/ "12"	Uses their <i>a</i> to find <i>e</i> or finds <i>e</i> by eliminating <i>a</i> (Ignore \pm here) (Can be implied by a correct answer)	M1
	$x = (\pm)\frac{a}{e}, = \pm \frac{144}{13}$	M1: $(x =)(\pm) \frac{a}{e}$ \pm not needed for this mark nor is x and even allow $y = (\pm) \frac{a}{e}$ here – just look for use of $\frac{a}{e}$ with numerical a and e. A1: $x = \pm \frac{144}{13}$ oe but must be an equation (Do not allow $x = \pm \frac{12}{13/2}$)	M1, A1
			Total 6
		ation for the ellipse (b ² =a ² (1-e ²)) the M's	

PhysicsAndMathsTutor.com

Question Number	Scheme	Marks
2. (a)	$k \operatorname{arsinh}\left(\frac{2x}{3}\right)(+c)$ or $k \ln[px + \sqrt{(p^2x^2 + \frac{9}{4}p^2)}](+c)$	M1
	$\frac{1}{2} \operatorname{arsinh}\left(\frac{2x}{3}\right)(+c)$ or $\frac{1}{2} \ln[px + \sqrt{(p^2x^2 + \frac{9}{4}p^2)}](+c)$	A1
		(2)
(b)	So: $\frac{1}{2}\ln\left[6+\sqrt{45}\right] - \frac{1}{2}\ln\left[-6+\sqrt{45}\right] = \frac{1}{2}\ln\left[\frac{6+\sqrt{45}}{-6+\sqrt{45}}\right]$	M1
	Uses correct limits <u>and</u> combines logs	
	$= \frac{1}{2} \ln \left[\frac{6 + \sqrt{45}}{-6 + \sqrt{45}} \right] \left[\frac{6 + \sqrt{45}}{6 + \sqrt{45}} \right] = \frac{1}{2} \ln \left[\frac{(6 + \sqrt{45})^2}{9} \right]$	M1
	Correct method to rationalise denominator (may be implied) Method must be clear if answer does not follow their fraction	
	$= \ln[2 + \sqrt{5}] (\text{ or } \frac{1}{2}\ln[9 + 4\sqrt{5}])$	Alcso
	Note that the last 3 marks can be scored without the need to rationalise e.g.	
	$2 \times \frac{1}{2} \left[\ln[2x + \sqrt{(4x^2 + 9)}] \right]_0^3 = \ln(6 + \sqrt{45}) - \ln 3 = \ln(\frac{6 + \sqrt{45}}{3})$	
	M1: Uses the limits 0 and 3 and doubles M1: Combines Logs	
	A1: $\ln[2 + \sqrt{5}]$ oe	
		(3) Total 5
Alternative for (a)	$x = \frac{3}{2} \sinh u \Rightarrow \int \frac{1}{\sqrt{9 \sinh^2 u + 9}} \cdot \frac{3}{2} \cosh u du = k \operatorname{arsinh}\left(\frac{2x}{3}\right) (+c)$	M1
	$\frac{1}{2} \operatorname{arsinh}\left(\frac{2x}{3}\right)(+c)$	A1
Alternative for (b)	$\left[\frac{1}{2}\operatorname{arsinh}\left(\frac{2x}{3}\right)\right]_{-3}^{3} = \frac{1}{2}\operatorname{arsinh} 2 -\frac{1}{2}\operatorname{arsinh} -2$	
	$\frac{1}{2}\ln(2+\sqrt{5}) - \frac{1}{2}\ln(\sqrt{5}-2) = \frac{1}{2}\ln(\frac{2+\sqrt{5}}{\sqrt{5}-2})$	M1
	Uses correct limits <u>and</u> combines logs	
	$=\frac{1}{2}\ln(\frac{2+\sqrt{5}}{\sqrt{5}-2},\frac{\sqrt{5}+2}{\sqrt{5}+2})=\frac{1}{2}\ln(\frac{2\sqrt{5}+4+5+2\sqrt{5}}{5-4})$	M1
	Correct method to rationalise denominator (may be implied) Method must be clear if answer does not follow their fraction	
	$=\frac{1}{2}\ln[9+4\sqrt{5}]$	A1cso
-		

PhysicsAndMathsTutor.com

Question Number	Sch	ieme		Marks
3.	$(\frac{dx}{d\theta}) = 2\sinh 2\theta$ and $(\frac{dy}{d\theta}) = 4\cosh\theta$ Or equivalent correct derivatives		B1	
	$A = (2\pi) \int 4\sinh\theta \sqrt{2\sinh^2\theta''} + 4\cosh\theta''^2 d\theta$			
	$A = (2\pi) \int 4\sinh\theta \sqrt{(1+(4\pi))^2} d\theta = (2\pi) \int 4\theta d\theta = $	or		M1
	Use of correct formula including			
	chain rule used. Allow th	e omissior	n of the 2π here.	
	$A = 32\pi \int \sin \theta$			B1
	$A = 32\pi \int (\sinh \theta x) d\theta x$			
	<u>Completely correct</u> expression fo This mark may be recovered la			
	$A = \frac{32\pi}{3} \left[\cosh^3\theta\right]_0^1$	M1: Val correct of of a corr depender	id attempt to integrate a expression or a multiple ect expression – nt on the first M1 rect expression	dM1A1
	$=\frac{32\pi}{3}\left[\cosh^3 1-1\right]$	M1: Use correctly previous	s the limits 0 and 1 . Dependent on both	ddM1A1
				(7)
	Example Alternative Integration for last 4 marks			
	$\int \sinh\theta\cosh^2\theta\mathrm{d}\theta = \int \sinh\theta(1+s)\mathrm{d}\theta$			
	$\int (\sinh\theta + \frac{1}{4}\sinh 3\theta - \frac{3}{4}\sinh\theta$			
	$=\frac{1}{4}\cosh\theta + \frac{1}{12}\cosh 3\theta$		dM1A1	
	dM1: $\int \sinh\theta \cosh^2\theta \mathrm{d}\theta = p\cosh\theta + q\cosh 3\theta$			
	$\mathbf{A1}: \ 32\pi \left[\frac{1}{4}\cosh\theta + \frac{1}{12}\cosh 3\theta\right]$			
	$A = 8\pi \left[\cosh\theta + \frac{1}{3}\cosh 3\theta\right]_{0}^{1}$ $= 8\pi (\cosh 1 + \frac{1}{3}\cosh 3 - \cosh 0 - \frac{1}{3})$	cosh 0)	M1: Uses the limits 0 and 1 correctly. Dependent on both previous M [*] 's	ddM1A1
	$\frac{32\pi}{3} \left[\cosh^3 1 - 1\right]$		A1: Cao	

PMT

PhysicsAndMathsTutor.com

Question Number	Scheme		Marks
3.	Alternative Cartesian Approach		
	$x = 1 + \frac{y^2}{8}$	Any correct Cartesian equation	B1
	$\frac{dx}{dy} = \frac{y}{4} \text{or} \frac{dy}{dx} = \frac{\sqrt{2}}{(x-1)^{\frac{1}{2}}}$	Correct Derivative	B1
	$A = \int 2\pi \cdot y \sqrt{\left(1 + \left(\frac{y}{4}\right)^2\right)} dy \text{ or } A = \int 2\pi \cdot \sqrt{8} (x - 1)^{\frac{1}{2}} \sqrt{\left(1 + \left(\frac{2}{x - 1}\right)\right)} dx$		M1
	Use of a cor	rect formula	
	$A = 2\pi \times \frac{2}{3} \times 8 \left(1 + \frac{y^2}{16}\right)^{\frac{3}{2}} \text{ or } A = \frac{4\pi\sqrt{8}}{3} x + 1^{\frac{3}{2}}$ M1: Convincing attempt to integrate a relevant expression – dependent on the first M1 but allow the omission of 2π		dM1 A1
	· · · · · · · · · · · · · · · · · · ·	rect expression for A	
	$A = 2\pi \times \frac{2}{3} \times 8 \ 1 + \sinh^2 1^{\frac{3}{2}} - 2\pi \times \frac{2}{3} \times \frac{2}{3}$	$\times 8 \text{ or } 2\pi \times \frac{2}{3} \times \sqrt{8} \ 1 + \cosh 2 \ \frac{3}{2} - \frac{32\pi}{3}$	ddM1
	Correct use of limits $(0 \rightarrow 4\sinh 1 \text{ for y or } 1 \rightarrow \cosh 2 \text{ for } x)$		
	Use $1 + \sinh^2 1 = \cosh^2 1$ Use $\cosh 2 = 2\cosh^2 1 - 1$		A 1
	to give $\frac{32\pi}{3} \left[\cosh^3 1 - 1 \right]$	to give $\frac{32\pi}{3} \left[\cosh^3 1 - 1\right]$	A1

Question Number	Sch	eme	Marks
4.	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{40}{\sqrt{(x^2 - 1)}} - 9$	M1: $\frac{dy}{dx} = \frac{p}{\sqrt{(x^2 - 1)}} - q$ A1: Cao	M1 A1
	Put $\frac{dy}{dx} = 0$ and obtain $x^2 = \dots$ (Allow sign errors only)	$e.g.\left(\frac{1681}{81}\right)$	dM1
	$x = \frac{41}{9}$	M1: Square root A1: $x = \frac{41}{9}$ or exact equivalent $(not \pm \frac{41}{9})$	M1 A1
	$y = 40 \ln \{ (\frac{41}{9}) + \sqrt{(\frac{41}{9})^2 - 1} \} - "41"$	Substitutes $x = "\frac{41}{9}"$ into the curve and uses the logarithmic form of arcosh	M1
	So $y = 80 \ln 3 - 41$	Cao	A1
			Total 7

Question Number	Sch	eme	Marks
5. (a) (i)&(ii)	$\begin{pmatrix} 1 & 1 & a \\ 2 & b & c \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1+a \\ b+c \\ 1 \end{pmatrix} = \lambda_1 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \text{ and so } a = -1, \ \lambda_1 = 1$		M1, A1, A1
	-	The arrow of the second secon	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	= $\lambda_2 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, and so $c = 2$, $\lambda_2 = 2$	M1, A1, A1
	•	cond eigenvector and puts equal to uces $c = 2$. A1: Deduces $\lambda_2 = 2$	
	$b + c = \lambda_1$ so $b = -1$	M1: Uses $b + c = \lambda_1$ with their λ_1 to find a value for <i>b</i> (They must have an equation in <i>b</i> and <i>c</i> from the first eigenvector to score this mark) A1: $b = -1$	M1A1
	$(a = -1, b = -1, c = 2, \lambda_1 = 1, \lambda_2 = 2)$		(8)
(b)(i)	$\det \mathbf{P} = -d - 1$	Allow $1 - d - 2$ or $1 - (2 + d)$ A correct (possibly un-simplified) determinant	B1
(ii)	$\begin{pmatrix} 0 & d & 1 \end{pmatrix}$	ninors $\begin{pmatrix} 1 & d+2 & 1 \\ 1 & 1 & 1 \\ d & d & -1 \end{pmatrix}$ or $\begin{pmatrix} 1 \\ -1 \\ -1 \\ -1 \end{pmatrix}$ a correct first step	B1
	$\frac{1}{-d-1} \begin{pmatrix} 1 & -1 & d \\ -2-d & 1 & -d \\ 1 & -1 & -1 \end{pmatrix}$	M1: Identifiable full attempt at inverse including reciprocal of determinant. Could be indicated by at least 6 correct elements. A1: Two rows or two columns correct (ignoring determinant) BUT M0A1A0 or M0A1A1 is not possible A1: Fully correct inverse	M1 A1 A1
			(5)
			Total 13

Question Number	Scheme		Marks
6(a)	$I_n = \int_0^4 \frac{x^{n-1} \times x(16 - x^2)^{\frac{1}{2}}}{dx} dx$	M1: Obtains $x(16-x^2)^{\frac{1}{2}}$ prior to integration A1: Correct underlined expression (can be implied by their integration)	M1A1
	$I_n = \left[-\frac{1}{3} x^{n-1} (16 - x^2) \right]$	$\int_{0}^{\frac{3}{2}} \int_{0}^{4} + \frac{n-1}{3} \int_{0}^{4} x^{n-2} (16 - x^{2})^{\frac{3}{2}} dx$	dM1
	dM1: Parts in the co	prrect direction (Ignore limits)	
	$\therefore I_n = \frac{n-1}{3} \int_0^4 x^{n-2}$	$(16-x^2)(16-x^2)^{\frac{1}{2}}dx$	
	i.e. $I_n = \frac{16(n-1)}{3} I_{n-2} - \frac{n-1}{3} I_n$	Manipulates to obtain at least one integral in terms of I_n or I_{n-2} on the rhs.	M1
	$I_n(1+\frac{n-1}{3}) = \frac{16(n-1)}{3}I_{n-2}$	Collects terms in I_n from both sides	M1
	$(n+2)I_n = 16(n-1)I_{n-2}*$	Printed answer with no errors	A1*cso
			(6)
Way 2	$\int_{0}^{4} x^{n} (16 - x^{2})^{\frac{1}{2}} dx = \int_{0}^{4} x^{n} \frac{(16 - x^{2})}{(16 - x^{2})^{\frac{1}{2}}}$	$dx = \int_0^4 \frac{16x^n}{(16-x^2)^{\frac{1}{2}}} dx - \int_0^4 \frac{x^{n+2}}{(16-x^2)^{\frac{1}{2}}} dx$	
	$= \int_0^4 16x^{n-1} \times x(16-x^2)^{-\frac{1}{2}}$	$dx - \int_0^4 x^{n+1} \times x(16 - x^2)^{-\frac{1}{2}} dx$	M1A1
	M1: Obtains $x(16-x^2)^{-\frac{1}{2}}$ prior to	integration A1: Correct expressions	
	$= \left[-16x^{n-1}(16-x^2)^{\frac{1}{2}} \right]_0^4 + \left[-\left(\left[-x^{n+1}(16-x^2)^{\frac{1}{2}} \right]_0^4 + \left(x^{n+1}(16-x^2)^{\frac{1}{2}} \right]_0^4 \right]_0^4 + \left(x^{n+1}(16-x^2)^{\frac{1}{2}} \right)_0^4 + \left(x^{n+1}$	$\frac{16(n-1)\int_{0}^{4} x^{n-2} (16-x^{2})^{\frac{1}{2}} dx}{(16-x^{2})^{\frac{1}{2}} dx}$	dM1
		•••	
	$I_n = 16(n-1)I_{n-2} - (n+1)I_n$	rection on both (Ignore limits) Manipulates to obtain at least one integral in terms of I_n or I_{n-2} on the rhs.	M1
	$I_n(1+n+1) = 16(n-1)I_{n-2}$	Collects terms in I_n from both sides	M1
	$(n+2)I_n = 16(n-1)I_{n-2}*$	Printed answer with no errors	A1*
Way 3	$\int_0^4 x^n (16 - x^2)^{\frac{1}{2}} dx = \int_0^4 x \times x^{n-1} \frac{(16 - x^2)^{\frac{1}{2}}}{(16 - x^2)^{\frac{1}{2}}} dx$	$\frac{x^2}{x^2)^{\frac{1}{2}}} dx \qquad \begin{array}{c} \text{M1: Obtains } x(16-x^2)^{-\frac{1}{2}} \\ \text{prior to integration} \\ \text{A1: Correct expression} \end{array}$	M1A1
	$= \left[-x^{n-1}(16 - x^2)(16 - x^2)^{\frac{1}{2}} \right]_0^4 + \int_0^4 (16 - x^2)^{\frac{1}{2}} = \int_0^4 (16 - x^2)^{\frac$	$6(n-1)x^{n-2} - (n+1)x^n(16-x^2)^{\frac{1}{2}}dx$	dM1
	dM1: Parts in the correct direction (Ignore limits)		
	$I_n = 16(n-1)I_{n-2} - (n+1)I_n$	Manipulates to obtain at least one integral in terms of I_n or I_{n-2} on the rhs.	M1
	$I_n(1+n+1) = 16(n-1)I_{n-2}$	Collects terms in I_n from both sides	M1
	$(n+2)I_n = 16(n-1)I_{n-2}*$	Printed answer with no errors	A1*

Question Number	Scheme		Marks
(b)	$I_{1} = \int_{0}^{4} x \sqrt{(16 - x^{2})} dx = \left[-\frac{1}{3} (16 - x^{2})^{\frac{3}{2}} \right]_{0}^{4} =$	$\frac{64}{3} \qquad \frac{M1: \text{ Correct integration}}{A1: \frac{64}{3} \text{ or equivalent}}$ $(May \text{ be implied by a later work - they are not asked explicitly for } I_1)$	M1 A1
	$\frac{64}{3}$ must come from c	correct work	
	Using $x = 4 \sin \theta$ $I_1 = \int_0^{\frac{\pi}{2}} 4 \sin \theta \sqrt{(16 - 16 \sin^2 \theta)} 4 \cos \theta$		
	$= \left[-\frac{64}{3} \cos^3 \right]$	0	
	M1: A <u>complete</u> substitution and attemption $A1: \frac{64}{3}$ or equiv		
	$I_5 = \frac{64}{7}I_3, I_3 = \frac{32}{5}I_1$ for ter	oplies to apply reduction rmula twice. First M1 for I_5 in rms of I_3 , second M1 for I_3 in rms of I_1 an be implied)	M1, M1
	$I_5 = \frac{131072}{105}$ Ar	ny <u>exact</u> equivalent (Depends all previous marks having en scored)	A1
			(5) Total 11

Question Number	Scheme		Marks
7(a)	$\left(\frac{dx}{d\theta} = -a\sin\theta \text{ and } \frac{dy}{d\theta} = b\right)$ M1: Differentiates both x and	$b\cos\theta$) so $\frac{dy}{dx} = \frac{b\cos\theta}{-a\sin\theta}$	M1 A1
	M1: Differentiates both x and	nd y and divides correctly	
	A1: Fully corre		
	Alterna		
	M1: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Rightarrow \frac{2x}{a^2} + \frac{2yy'}{b^2} =$	$x 0 \Rightarrow y' = -\frac{b^2 x}{a^2 y} = -\frac{b^2 a \cos \theta}{a^2 b \sin \theta}$	
	Differentiates implicitly an	-	
	A1: = -	$b\cos\theta$	
		a sinθ	
	Normal has gradient $\frac{a\sin\theta}{b\cos\theta}or\frac{a^2y}{b^2x}$	Correct perpendicular gradient rule	M1
	Normal has gradient $\frac{a\sin\theta}{b\cos\theta}or\frac{a^2y}{b^2x}$ $(y-b\sin\theta) = \frac{a\sin\theta}{b\cos\theta}(x-a\cos\theta)$		M1
	If $y = mx + c$ is used n	eed to find c for M1	
	$ax\sin\theta - by\cos\theta = (a^2)$	$(a^2-b^2)\sin\theta\cos\theta$ *	A1
	Fully correct completion	on to printed answer	
			(:
(b)	$x = \frac{(a^2 - b^2)\cos\theta}{a}$	Allow un-simplified	B1
	$y = -\frac{(a^2 - b^2)\sin\theta}{b}$	Allow un-simplified	B1
	$x = \frac{(a^2 - b^2)\cos\theta}{a}$ $y = -\frac{(a^2 - b^2)\sin\theta}{b}$ $\left(= \frac{1}{2} \frac{(a^2 - b^2)^2 \cos\theta \sin\theta}{ab} \right)$	$= \frac{1}{4} \frac{(a^2 - b^2)^2}{ab} \sin 2\theta$	M1A1
	M1: Area of triangle is $\frac{1}{2}$ " <i>OA</i> "×" <i>OB</i>	³ " and uses double angle formula	
	correctly		
	A1: Correct expression for the area (must be positive)		
		1	(4
(c)	Maximum area when $\sin 2\theta = 1$ so $\theta = \frac{\pi}{4}$ or 45	Correct value for θ (may be implied by correct coordinates)	B1
	So the point <i>P</i> is at $\left(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right)$ oe	M1: Substitutes their value of θ where $0 < \theta < \frac{\pi}{2}$ or $0 < \theta < 90$ into	M1 A1
	$\left(a\cos\frac{\pi}{4}, b\sin\frac{\pi}{4}\right)$ scores B1M1A0	their parametric coordinates A1: Correct exact	-
		coordinates	
	Mark part (c) independently		
	• • • • •	×	(.
			Total 12

Question Number	Sche	eme	Marks
8 (a)	(6i+2j+12k).(3i-4j+2k) = 34	Attempt scalar product	M1
	$\frac{(6\mathbf{i}+2\mathbf{j}+12\mathbf{k}).(3\mathbf{i}-4\mathbf{j}+2\mathbf{k})-5}{\sqrt{3^2+4^2+2^2}}$	Use of correct formula	M1
	$\sqrt{29} (\operatorname{not} - \sqrt{29})$	Correct distance (Allow $29/\sqrt{29}$)	A1
			(3)
(a) Way 2	$\mathbf{r} = (\mathbf{6i} + \mathbf{2j} + \mathbf{12k})$ $\therefore \ 6 + 3\lambda \ 3 + \ 2 - 4\lambda$		M1
	Substitutes the parametric coordin	• • • • •	
	perpendicular to the plane i	-	
	$\lambda = -1 \Rightarrow 3, 6, 10 \text{ or } -3\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$	Solves for λ to obtain the required point or vector.	M1
	$\sqrt{29}$	Correct distance	A1
(a) Way 3	Parallel plane containing (6, 2, 12) is $\mathbf{r}.(3\mathbf{i}-4\mathbf{j}+2\mathbf{k}) = 34$ $\Rightarrow \frac{\mathbf{r}.(3\mathbf{i}-4\mathbf{j}+2\mathbf{k})}{\sqrt{29}} = \frac{34}{\sqrt{29}}$	Origin to this plane is $\frac{34}{\sqrt{29}}$	M1
	$\Rightarrow \frac{\mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k})}{\sqrt{29}} = \frac{34}{\sqrt{29}}$ $\Rightarrow \frac{\mathbf{r}.(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k})}{\sqrt{29}} = \frac{5}{\sqrt{29}}$	Origin to plane is $\frac{5}{\sqrt{29}}$	M1
	$\frac{34}{\sqrt{29}} - \frac{5}{\sqrt{29}} = \sqrt{29}$	Correct distance	A1
(b) For a cross product, if the method is	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 5 \\ 1 & -1 & -2 \end{vmatrix} = \begin{pmatrix} 3 \\ 9 \\ -3 \end{pmatrix}$	M1: Attempts $(2i+1j+5k) \times (i-j-2k)$ A1: Any multiple of $i + 3j - k$	M1A1
unclear, 2 out of 3 components	$(\cos\theta) = \frac{(3i-4j+2k).(i)}{\sqrt{3^2+4^2+2^2}\sqrt{1^2}}$	$\frac{+3j-k}{(2^{2}+3^{2}+1)^{2}} \left(=\frac{-11}{\sqrt{29}\sqrt{11}}\right)$	M1
should be	Attempts scalar product of norm	al vectors including magnitudes	
correct for M1	52	Obtains angle using arccos (dependent on previous M1)	dM1 A1
	Do not isw and mark the final ans	swer e.g. $90 - 52 = 38$ loses the A1	(5)
(c)	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & -1 \\ 3 & -4 & 2 \end{vmatrix} = \begin{pmatrix} 2 \\ -5 \\ -13 \end{pmatrix}$	M1: Attempt cross product of normal vectors	M1A1
	$\begin{array}{c cccc} 3-4 & 2 & (-13) \\ \hline 5 & 15 \\ \end{array}$	A1: Correct vector	
	$x = 0: (0, \frac{5}{2}, \frac{15}{2}), y = 0: (1)$	15 15	M1A1
	M1: Valid attempt at a point on both planes. A1: Correct coordinates May use way 3 to find a point on the line		
	$r \times (-2i + 5j + 13k) = -5i - 15j + 5k$	M1: r × dir = pos.vector × dir (This way round) A1: Correct equation	M1A1
			(6)

Question Number	Schen	ne	Marks
(c) Way 2	" $x + 3y - z = 0$ " and $3x - 4y + 2z = 5$ eliminate x, or y or z and substitutes ba terms of th	ck to obtain two of the variables in	M1
	$(x = 1 - \frac{2}{5}y \text{ and } z = 1 + \frac{13}{5}y) \text{ or } ($ $(y = \frac{5 - 5x}{2} \text{ and } z = \frac{15 - 13x}{2})$	$(x = 1 - \frac{2}{5}y \text{ and } z = 1 + \frac{13}{5}y) \text{ or } (y = \frac{5z - 5}{13} \text{ and } x = \frac{15 - 2z}{13}) \text{ or}$ $(y = \frac{5 - 5x}{2} \text{ and } z = \frac{15 - 13x}{2})$	
	Cartesian Ec $x = \frac{y - \frac{5}{2}}{-\frac{5}{2}} = \frac{z - \frac{15}{2}}{-\frac{13}{2}} \text{ or } \frac{x - 1}{-\frac{2}{5}} = y =$		
	Points and Directions: Direct $(0, \frac{5}{2}, \frac{15}{2}), \mathbf{i} - \frac{5}{2}\mathbf{j} - \frac{13}{2}\mathbf{k}$ or $(1, 0, 1), -\frac{2}{5}\mathbf{i} + \mathbf{j}$		M1 A1
	M1:Uses their Cartesian equations directi A1: Correct point and direction – it n i.e. look for the correct number	on nay not be clear which is which –	
	Equation of line in re r×(-2i+5j+13k) Or Equiv	equired form: e.g. = $-5i - 15j + 5k$	M1 A1
			(6) Total 14
(c) Way 3	$\begin{pmatrix} 2\lambda + \mu \\ \lambda - \mu \\ 5\lambda - 2\mu \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -4 \\ 2 \end{pmatrix} = 5 \Longrightarrow 12\lambda + 3\mu = 5$	M1: Substitutes parametric form of Π_2 into the vector equation of Π_1 A1: Correct equation	M1A1
	$\mu = \frac{5}{3}, \lambda = 0$ gives $(\frac{5}{3}, -\frac{5}{3}, \frac{10}{3})$	M1: Finds 2 points and direction	
	$\mu = 0, \lambda = \frac{5}{12} \text{ gives}\left(\frac{5}{6}, \frac{5}{12}, \frac{25}{12}\right)$ Direction $\begin{pmatrix} -2\\5\\13 \end{pmatrix}$	A1: Correct coordinates and direction	M1A1
	Equation of line in required form: e.g. $\mathbf{r} \times (-2\mathbf{i} + 5\mathbf{j} + 13\mathbf{k}) = -5\mathbf{i} - 15\mathbf{j} + 5\mathbf{k}$ Or Equivalent		M1A1
	Do not allow 'mixed' methods –	mark the best single attempt	