

Question Number	Scheme	Marks	
1.	$\frac{dy}{dx} = 6x^2$ and so surface area $= 2\pi \int 2x^3 \sqrt{(1+(6x^2)^2)^2} dx$	B1	
	$= 4\pi \left[\frac{2}{3 \times 36 \times 4} (1 + 36x^4)^{\frac{3}{2}} \right]$	M1 A1	
	Use limits 2 and 0 to give $\frac{4\pi}{216} [13860.016 - 1] = 806$ (to 3 sf)	DM1 A1	
			5
B1	Both bits CAO but condone lack of 2π		
1M1	Integrating $\int \left(y \sqrt{1 + \left(\text{their} \frac{dy}{dx} \right)^2} \right) dx$, getting $k(1 + 36x^4)^{\frac{3}{2}}$, condone lack of 2π		
	If they use a substitution it must be a complete method.		
1A1	CAO		
2DM1	Correct use of 2 and 0 as limits		
2A1 2.	CAO		
(a) (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{\sqrt{(1-x^2)}} + \arcsin x$	M1 A1	
(ii)	At given value derivative $=\frac{1}{\sqrt{3}} + \frac{\pi}{6} = \frac{2\sqrt{3} + \pi}{6}$	B1	(2)
			(1)
(b)	$\frac{dy}{dt} = \frac{6e^{2x}}{2}$	1M1 A1	
	$dx 1+9e^{4x}$		
	$=\frac{6}{2}$	2M1	
	$e^{-2x} + 9e^{2x}$	2) (1	
	$=\frac{3}{5(2r+2r)(2r+2r)}$	3IVI I	
	$\frac{1}{2}(e^{-x}+e^{-x})+\frac{1}{2}(e^{-x}-e^{-x})$	A 1	
	$\therefore \frac{dy}{l} = \frac{3}{5 - 1 \cdot 2 \cdot 4 \cdot 1 \cdot 2} $	AI CSO	
	$dx = 5\cos 2x + 4\sin 2x$		(5)
			(J) 8
	<u>Notes</u> :		
(a) M1	Differentiating getting an arcsinx term and a $\frac{1}{\sqrt{1 \pm x^2}}$ term		
A1	CAO		
B1	CAO any correct form		

June 2011 Further Pure Mathematics FP3 6669 Mark Scheme

GCE Further Pure Mathematics FP3 (6669) June 2011

edexcel

Question Number	Scheme	Marks
(b) 1M1	Of correct form $\frac{ae^{2x}}{1+b-4x}$	
1A1 2M1 3M1 2A1	CAO Getting from expression in e^{4x} to e^{2x} and e^{-2x} only Using sinh2x and cosh2x in terms of $(e^{2x} + e^{-2x})$ and $(e^{2x} - e^{-2x})$ CSO – answer given	
3. (a)	$x^{2}-10x+34 = (x-5)^{2}+9$ so $\frac{1}{x^{2}-10x+34} = \frac{1}{(x-5)^{2}+9} = \frac{1}{u^{2}+9}$ (mark can be earned in either part (a) or (b))	B1
	$I = \int \frac{1}{u^2 + 9} du = \left[\frac{1}{3}\arctan\left(\frac{u}{3}\right)\right] \qquad I = \int \frac{1}{(x - 5)^2 + 9} du = \left[\frac{1}{3}\arctan\left(\frac{x - 5}{3}\right)\right]$ Uses limits 3 and 0 to give $\frac{\pi}{12}$ Uses limits 8 and 5 to give $\frac{\pi}{12}$	M1 A1 DM1 A1 (5)
(b) Alt 1	$I = \ln\left(\left(\frac{x-5}{3}\right) + \sqrt{\left(\frac{x-5}{3}\right)^2 + 1}\right) \text{ or } I = \ln\left(\frac{x-5+\sqrt{(x-5)^2+9}}{3}\right)$ or $I = \ln\left((x-5) + \sqrt{(x-5)^2+9}\right)$	M1 A1
	Uses limits 5 and 8 to give $\ln(1+\sqrt{2})$.	DM1 A1 (4) 9
(b) Alt 2	Uses u = x-5 to get $I = \int \frac{1}{\sqrt{u^2 + 9}} du = \left[\operatorname{arsinh}\left(\frac{u}{3}\right) \right] = \ln\left\{ u + \sqrt{u^2 + 9} \right\}$ Uses limits 3 and 0 and ln expression to give $\ln(1 + \sqrt{2})$.	M1 A1 DM1 A1
(b) Alt 3	Use substitution $x - 5 = 3 \tan \theta$, $\frac{dx}{d\theta} = 3 \sec^2 \theta$ and so $I = \int \sec \theta d\theta = \ln(\sec \theta + \tan \theta)$	(4) M1 A1
	Uses limits 0 and $\frac{\pi}{4}$ to get $\ln(1+\sqrt{2})$.	DM1 A1 (4)
(a) B1 1M1 1A1 2DM1 2A1	<u>Notes:</u> CAO allow recovery in (b) Integrating getting k arctan term CAO Correctly using limits. CAO	

PMT

Question Number	Scheme	Marks	
(b) 1M1 1A1 2DM1 2A1	Integrating to get a ln or hyperbolic term CAO Correctly using limits. CAO		
4. (a)	$I_{n} = \left[\frac{x^{3}}{3}(\ln x)^{n}\right] - \int \frac{x^{3}}{3} \times \frac{n(\ln x)^{n-1}}{x} dx$	M1 A1	
	$= \left[\frac{x^{3}}{3}(\ln x)^{n}\right]_{1}^{e} - \int_{1}^{e} \frac{nx^{2}(\ln x)^{n-1}}{3}dx$	DM1	
	$\therefore I_n = \frac{e^3}{3} - \frac{n}{3} I_{n-1} \qquad *$	A1cso	(4)
(b)	$I_{0} = \int_{1}^{e} x^{2} dx = \left[\frac{x^{3}}{3}\right]_{1}^{e} = \frac{e^{3}}{3} - \frac{1}{3} \text{ or } I_{1} = \frac{e^{3}}{3} - \frac{1}{3} \left(\frac{e^{3}}{3} - \frac{1}{3}\right) = \frac{2e^{3}}{9} + \frac{1}{9}$ $I_{1} = \frac{e^{3}}{3} - \frac{1}{3}I_{0}, I_{2} = \frac{e^{3}}{3} - \frac{2}{3}I_{1} \text{ and } I_{3} = \frac{e^{3}}{3} - \frac{3}{3}I_{2} \text{ so } I_{3} = \frac{4e^{3}}{27} + \frac{2}{27}$	M1 A1 M1 A1	
(a)1M1 1A1 2DM1 2A1	<u>Notes</u>: Using integration by parts, integrating x^2 , differentiating $(\ln x)^n$ CAO Correctly using limits 1 and e CSO answer given		(4) 8
(b)1M1 1A1 2M1 2A1	Evaluating I_0 or I_1 by an attempt to integrate something CAO Finding I_3 (also probably I_1 and I_2) If 'n's left in M0 I_3 CAO		

edexcel

Question Number	Scheme	Marks	
5. (a)	Graph of $y = 3\sinh 2x$ Shape of $-e^{2x}$ graph Asymptote: $y = 13$ Value 10 on y axis and value 0.7 or	B1 B1 B1 B1	
	$\frac{1}{2}\ln\left(\frac{22}{3}\right)$ on x axis		(4)
(b)	Use definition $\frac{3}{2}(e^{2x} - e^{-2x}) = 13 - 3e^{2x} \rightarrow 9e^{4x} - 26e^{2x} - 3 = 0$ to form quadratic $\therefore e^{2x} = -\frac{1}{9}$ or 3 $\therefore x = \frac{1}{2}\ln(3)$	M1 A1 DM1 A1 B1	(5) 9
(a) 1B1 2B1 3B1 4B1 (b) 1M1 1A1 2DM1 2A1 B1	Notes: $y = 3\sinh 2x$ first and third quadrant.Shape of $y = -e^{2x}$ correct intersects on positive axes.Equation of asymptote, $y = 13$, given. Penlise 'extra' asymptotes hereIntercepts correct bothGetting a three terms quadratic in e^{2x} Correct three term quadraticSolving for e^{2x} CAO for e^{2x} condone omission of negative value.CAO one answer only		

	•			
20	lyancing.	loarning	changing	111/00
au	IVALICITIE	leanning.	Changing	11753
			0.0	

Scheme	Marks	
$\mathbf{n} = (2\mathbf{j} \cdot \mathbf{k}) \times (3\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) = 6\mathbf{i} - 3\mathbf{j} - 6\mathbf{k}$ o.a.e. (e.g. $2\mathbf{i} - \mathbf{j} - 2\mathbf{k}$)	M1 A1	(2)
Line <i>l</i> has direction $2\mathbf{i} - 2\mathbf{j} - \mathbf{k}$ Angle between line <i>l</i> and normal is given by $(\cos\beta \text{ or }\sin\alpha) = \frac{4+2+2}{\sqrt{9}\sqrt{9}} = \frac{8}{9}$ $\alpha = 90 - \beta = 63$ degrees to nearest degree.	B1 M1 A1ft A1 awrt	(4)
Plane <i>P</i> has equation $\mathbf{r}.(2\mathbf{i} - \mathbf{j} - 2\mathbf{k}) = 1$ Perpendicular distance is $\frac{1 - (-7)}{\sqrt{9}} = \frac{8}{3}$	M1 A1 M1 A1	(4)
Parallel plane through A has equation $\mathbf{r} \cdot \frac{2\mathbf{i} - \mathbf{j} - 2\mathbf{k}}{3} = \frac{-7}{3}$ Plane P has equation $\mathbf{r} \cdot \frac{2\mathbf{i} - \mathbf{j} - 2\mathbf{k}}{3} = \frac{1}{3}$	M1 A1 M1	10
So O lies between the two and perpendicular distance is $\frac{1}{3} + \frac{7}{3} = \frac{8}{3}$ Distance A to $(3,1,2) = \sqrt{2^2 + 2^2 + 1^2} = 3$	A1 M1A1	(4)
Perpendicular distance is '3' sin $\alpha = 3 \times \frac{3}{9} = \frac{3}{3}$ Finding Cartesian equation of plane P: $2x - y - 2z - 1 = 0$ $d = \frac{ n_1 \alpha + n_2 \beta + n_3 \gamma + d }{\sqrt{n_1^2 + n_2^2 + n_3^2}} = \frac{ 2(1) - 1(3) - 2(3) - 1 }{\sqrt{2^2 + 1^2 + 2^2}} = \frac{8}{3}$	M1A1 M1 A1 M1A1	(4)
Notes:Cross product of the correct vectorsCAO o.e.CAOAngle between ' $2\mathbf{i} - \mathbf{j} - 2\mathbf{k}$ ' and $2\mathbf{i} - 2\mathbf{j} - \mathbf{k}$, formula of correct form8/9ftCAO awrtEqn of plane using $2\mathbf{i} - \mathbf{j} - 2\mathbf{k}$ or dist of A from O or finding length of APCorrect equation (must have =) or A to $(3,1,2) = 3$ Using correct method to find perpendicular distanceCAO		(4)
	Scheme $\mathbf{n} = (2\mathbf{j} \cdot \mathbf{k}) \times (3\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) = 6\mathbf{i} - 3\mathbf{j} - 6\mathbf{k} \text{ o.a.e.} (e.g. 2\mathbf{i} - \mathbf{j} - 2\mathbf{k})$ Line <i>l</i> has direction $2\mathbf{i} - 2\mathbf{j} - \mathbf{k}$ Angle between line <i>l</i> and normal is given by $(\cos \beta \text{ or } \sin \alpha) = \frac{4+2+2}{\sqrt{9}\sqrt{9}} = \frac{8}{9}$ $\alpha = 90 - \beta = 63$ degrees to nearest degree. Plane <i>P</i> has equation $\mathbf{r} \cdot (2\mathbf{i} - \mathbf{j} - 2\mathbf{k}) = 1$ Perpendicular distance is $\frac{1-(-7)}{\sqrt{9}} = \frac{8}{3}$ Parallel plane through A has equation $\mathbf{r} \cdot \frac{2\mathbf{i} - \mathbf{j} - 2\mathbf{k}}{3} = \frac{-7}{3}$ Plane P has equation $\mathbf{r} \cdot \frac{2\mathbf{i} - \mathbf{j} - 2\mathbf{k}}{3} = \frac{1}{3}$ So O lies between the two and perpendicular distance is $\frac{1}{3} + \frac{7}{3} = \frac{8}{3}$ Distance A to $(3, 1, 2) = \sqrt{2^2 + 2^2 + 1^2} = 3$ Perpendicular distance is '3' sin $\alpha = 3 \times \frac{8}{9} = \frac{8}{3}$ Finding Cartesian equation of plane P: $2\mathbf{x} - \mathbf{y} - 2\mathbf{z} - 1 = 0$ $d = \frac{ n(\alpha + n_2\beta + n_3\gamma + d]}{\sqrt{n_1^2 + n_2^2 + n_3^2}} = \frac{ 2(1) - 1(3) - 2(3) - 1 }{\sqrt{2^2 + 1^2 + 2^2}} = \frac{8}{3}$ Cross product of the correct vectors CAO o.e. CAO Angle between '2\mathbf{i} - \mathbf{j} - 2\mathbf{k} ' and 2\mathbf{i} - 2\mathbf{j} - \mathbf{k}, formula of correct form 8.99ft CAO awrt Eqn of plane using $2\mathbf{i} - \mathbf{j} - 2\mathbf{k}$ or dist of A from O or finding length of AP Correct equation (must have =) or A to $(3, 1, 2) = 3$ Using correct method to find perpendicular distance CAO	SchemeMarks $\mathbf{n} = (2\mathbf{j} \cdot \mathbf{k}) \times (3\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) = 6\mathbf{i} - 3\mathbf{j} - 6\mathbf{k}$ o.a.e. (e.g. $2\mathbf{i} - \mathbf{j} - 2\mathbf{k}$)MI A1Line <i>l</i> has direction $2\mathbf{i} - 2\mathbf{j} - \mathbf{k}$ B1Angle between line <i>l</i> and normal is given by $(\cos \beta \text{ or } \sin \alpha) = \frac{4+2+2}{\sqrt{9}\sqrt{9}} = \frac{8}{9}$ B1 $\alpha = 90 - \beta = 63$ degrees to nearest degree.M1 A1Plane <i>P</i> has equation $\mathbf{r}.(2\mathbf{i} - \mathbf{j} - 2\mathbf{k}) = 1$ M1 A1Perpendicular distance is $\frac{1-(-7)}{\sqrt{9}} = \frac{8}{3}$ M1 A1Parallel plane through A has equation $\mathbf{r}.\frac{2\mathbf{i} - \mathbf{j} - 2\mathbf{k}}{3} = \frac{-7}{3}$ M1 A1Plane P has equation $\mathbf{r}.\frac{2\mathbf{i} - \mathbf{j} - 2\mathbf{k}}{3} = \frac{1}{3}$ M1 A1So O lies between the two and perpendicular distance is $\frac{1}{3} + \frac{7}{3} = \frac{8}{3}$ M1A1Distance A to $(3, 1, 2) = \sqrt{2^2 + 2^2 + 1^2} = 3$ M1A1Perpendicular distance is '3' sin $\alpha = 3 \times \frac{8}{9} = \frac{8}{3}$ M1A1finding Cartesian equation of plane P: $2\mathbf{x} - \mathbf{y} - 2\mathbf{z} - 1 = 0$ M1 A1 $d = \frac{ n, \alpha + n_3 \beta + n_3 \mathbf{y} + d }{\sqrt{n^2} + n_3^2} = \frac{ 2(1) - (1) - 2(3) - 1 }{\sqrt{2^2 + 1^2 + 2^2}} = \frac{8}{3}$ M1A1Cross product of the correct vectorsNotes:CAOAngle between '2i - j - 2k' and 2i - 2j - k, formula of correct form&9ftCAO awrtEqn of plane using $2\mathbf{i} - \mathbf{j} - 2\mathbf{k}$ or dist of A from O or finding length of APCorrect equation (must have =) or A to $(3, 1, 2) = 3$ Using correct method to find perpendicular distance

edexcel

Question Number	Scheme	Marks	;
7. (a)	Det $\mathbf{M} = k(0-2) + 1(1+3) + 1(-2-0) = -2k + 4 - 2 = 2 - 2k$	M1 A1	(2)
(b)	$\mathbf{M}^{T} = \begin{pmatrix} k & 1 & 3 \\ -1 & 0 & -2 \\ 1 & -1 & 1 \end{pmatrix} \text{ so cofactors} = \begin{pmatrix} -2 & -1 & 1 \\ -4 & k - 3 & k + 1 \\ -2 & 2k - 3 & 1 \end{pmatrix}$	M1	
	$\mathbf{M}^{-1} = \frac{1}{2 - 2k} \begin{pmatrix} -2 & -1 & 1 \\ -4 & k - 3 & k + 1 \\ -2 & 2k - 3 & 1 \end{pmatrix}$	M1 A3	(5)
(c)	Let (x, y, z) be on l_1 . Equation of l_2 can be written as $\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \\ 7 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix}$.	B1	
	Use $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathbf{M}^{-1} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ with $k = 2$. i.e. $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{-2} \begin{pmatrix} -2 & -1 & 1 \\ -4 & -1 & 3 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 4+4\lambda \\ 1+\lambda \\ 7+3\lambda \end{pmatrix}$	M1	
	$\therefore \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3\lambda + 1 \\ 4\lambda - 2 \\ 2\lambda \end{pmatrix}$	M1 A1	
	and so $(\mathbf{r} \cdot \mathbf{a}) \times \mathbf{b} = 0$ where $\mathbf{a} = \mathbf{i} - 2\mathbf{j}$ and $\mathbf{b} = 3\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$ or equivalent or $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ where $\mathbf{a} = \mathbf{i} - 2\mathbf{j}$ and $\mathbf{b} = 3\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$ or equivalent	B1ft	(5) 12
(a) M1 A1	<u>Notes:</u> Finding determinant at least one component correct. CAO		
(b) 1M1 2M1 1A1 2A1 3A1	Finding matrix of cofactors or its transpose Finding inverse matrix, 1/(det) cofactors + transpose At least seven terms correct (so at most 2 incorrect) condone missing det At least eight terms correct (so at most 1 incorrect) condone missing det All nine terms correct, condone missing det		
(c) 1B1 1M1 2M1 A1 2B1	Equation of l_2 Using inverse transformation matrix correctly Finding general point in terms of λ . CAO for general point in terms of one parameter ft for vector equation of their l_1		

Question Number	Scheme	Marks
8. (a)	Uses $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{b\cosh\theta}{a\sinh\theta}$ or $\frac{2x}{a^2} - \frac{2yy'}{b^2} = 0 \rightarrow y' = \frac{xb^2}{ya^2} = \frac{b\cosh\theta}{a\sinh\theta}$ So $y - b\sinh\theta = \frac{b\cosh\theta}{a\sinh\theta}(x - a\cosh\theta)$	M1 A1 M1
	$a \sinh \theta$ $\therefore ab(\cosh^2 \theta - \sinh^2 \theta) = xb \cosh \theta - ya \sinh \theta \text{ and } as (\cosh^2 \theta - \sinh^2 \theta) = 1$ $xb \cosh \theta - ya \sinh \theta = ab *$	A1cso
		(4)
(b)	<i>P</i> is the point $(\frac{a}{\cosh\theta}, 0)$	M1 A1
(c)	l_2 has equation $x = a$ and meets l_1 at $Q(a, \frac{b(\cosh \theta - 1)}{\sinh \theta})$	M1 A1
		(2)
(d) Alt 1	The mid point of PQ is given by $X = \frac{a(\cosh \theta + 1)}{2\cosh \theta}, Y = \frac{b(\cosh \theta - 1)}{2\sinh \theta}$	1M1 A1ft
	$4Y^{2} + b^{2} = b^{2} \left(\frac{\cosh^{2} \theta + 1 - 2\cosh \theta + \sinh^{2} \theta}{\sinh^{2} \theta} \right)$	2M1
	$=b^2\left(\frac{2\cosh^2\theta-2\cosh\theta}{\sinh^2\theta}\right)$	3M1
	$X(4Y^{2}+b^{2}) = ab^{2}\left(\frac{(\cosh\theta+1)(\cosh\theta-1)2\cosh\theta}{2\cosh\theta\sinh^{2}\theta}\right)$	4M1
	Simplify fraction by using $\cosh^2 \theta - \sinh^2 \theta = 1$ to give $x(4y^2 + b^2) = ab^2 *$	A1cso (6)
(d) Alt 2	First line of solution as before $4Y^{2} + b^{2} = b^{2} \left(\coth^{2} \theta + \operatorname{cosech}^{2} \theta - 2 \coth \theta \operatorname{cosech} \theta + 1 \right)$	1M1A1ft 2M1
	$=b^2(2 \operatorname{coth}^2 \theta - 2 \operatorname{coth} \theta \operatorname{cosech} \theta)$	3M1
	$X(4Y^{2}+b^{2}) = ab^{2} (\operatorname{coth} \theta(\operatorname{coth} \theta - \operatorname{cosech} \theta)(1 + \operatorname{sech} \theta))$	4M1
	Simplify expansion by using $\operatorname{coth}^2 \theta - \operatorname{cosech}^2 \theta = 1$ to give $x(4y^2 + b^2) = ab^2 *$	Alcso
		(6)
		14

Question Number	Scheme	Marks
8. (a)1M1 1A1 2M1 2A1	Finding gradient in terms of θ CAO Finding equation of tangent CSO (answer given) look for $\pm(\cosh^2\theta - \sinh^2\theta)$	
(b)M1 A1ft	Putting $y = 0$ into their tangent P found, ft for their tangent o.e. Putting $x = a$ into their tangent	
(c) M1 A1	CAO Q found o.e. a_{1}	
(d) 1M1 1A1 2M1 3M1 4M1 2A1	For Alt 1 and 2 Finding expressions, in terms of $\sinh \theta$ and $\cosh \theta$ but must be adding Ft on their P and Q, Finding $4y^2 + b^2$ Simplified, factorised, maximum of 2 terms per bracket Finding $x(4y^2 + b^2)$, completely factorised, maximum of 2 terms per bracket CSO	
(d) 1M1 1A1 2M1 3M1 4M1 2A1	For Alts 3, 4 and 5 Finding expressions, in terms of $\sinh \theta$ and $\cosh \theta$ but must be adding Ft on their P and Q Getting $\cosh \theta$ in terms of x y or y^2 in terms of $\cosh \theta$ or $\sinh \theta$ in terms of x and y Getting equation in terms of x and y only. No square roots. CSO	

Question Number	Scheme		Marks
8(d)	$v = a(\cosh\theta + 1)$ $v = b(\cosh\theta - 1)$	As main scheme	1M1 A1ft
Alt 3	$X = \frac{1}{2\cosh\theta}, Y = \frac{1}{2\sinh\theta}$ $\cosh\theta = \frac{a}{2\theta}$	$\cosh\theta$ in terms of x	2M1
	$\sinh\theta = \frac{b(\cosh\theta - 1)}{2x - a} = \frac{b(a - x)}{1 - x}$	$\sinh\theta$ in terms of x and y	3M1
	$\frac{2y}{\left(\frac{a}{2x-a}\right)^2} - \left(\frac{b(a-x)}{(2x-a)y}\right)^2 = 1$	Using $\cosh^2\theta - \sinh^2\theta = 1$	4M1
	Simplifies to give required equation $\begin{bmatrix} y^2 4x(a-x) = b^2(a-x)^2, & x(4y^2+b^2) = ab^2 \end{bmatrix}$]	A1cso
			(6)
Alt 4	$X = \frac{a(\cosh \theta + 1)}{2\cosh \theta}, Y = \frac{b(\cosh \theta - 1)}{2\sinh \theta}$	As main scheme	1M1 A1ft
	$\cosh\theta = \frac{a}{2x - a}$	$\cosh\theta$ in terms of x	2M1
	$y^{2} = \frac{b^{2}(\cosh\theta - 1)^{2}}{4(\cosh^{2}\theta - 1)} = \frac{b^{2}(\cosh\theta - 1)}{4(\cosh\theta + 1)}$	y^2 in terms of $\cosh \theta$ only	3M1
	$y^{2} = \frac{b^{2} \left(\frac{2a - 2x}{2x - a}\right)^{2}}{4 \left(\frac{2x}{2x - a}\right)^{2}} \text{ o.e}$	Forms equation in x and y only	4M1
	Simplifies to give required equation	I	A1 cso (6)
Alt 5	$X = \frac{a(\cosh \theta + 1)}{2\cosh \theta}, Y = \frac{b(\cosh \theta - 1)}{2\sinh \theta}$	As main scheme	1M1 A1ft
	$\cosh\theta = \frac{a}{2x - a}$	$\cosh\theta$ in terms of x	2M1
	$y = \left(\frac{b(\cosh\theta - 1)}{2\sinh\theta}\right) = \left(\frac{b(\cosh\theta - 1)}{2\sqrt{\cosh^2\theta - 1}}\right)$	y in terms of $\cosh \theta$ only	3M1
	Eliminate $$ and forms equation in x and y Simplifies to give required equation		4M1 A1cso