- 1. Given that $y = \arctan\left(\frac{2x}{3}\right)$,
 - (a) find $\frac{dy}{dx}$, giving your answer in its simplest form.

(2)

(b) Use integration by parts to find

$$\int \arctan\left(\frac{2x}{3}\right) dx$$

(4)

$$= \frac{2\pi}{3}$$

$$\frac{4n^2}{9} + 1 \frac{3y}{2n} = \frac{2}{3}$$

$$\frac{4n^2+9}{9}\left(\frac{\partial b}{\partial n}\right)=\frac{2}{3}$$

$$\frac{1}{2} = \frac{6}{4n^2+9}$$

The line with equation x = 9 is a directrix of an ellipse with equation

$$\frac{x^2}{a^2} + \frac{y^2}{8} = 1$$

where a is a positive constant.

Find the two possible exact values of the constant a.

(6)

2. Direction
$$\gamma = 9 \Rightarrow 9 =$$

$$-e = \frac{\alpha}{q}$$

$$8 = a^2 \left(1 - \frac{a^2}{81}\right)$$

$$= 8 = a^2 - \frac{a^4}{81}$$

ay	-81a2	+648	20

$$(a^2-72)(a^2-9)=0$$

2>0

$$a^{2}=9 =) a=3$$

- 3. Using the definitions of $\sinh x$ and $\cosh x$ in terms of exponentials,
 - (a) prove that

$$\cosh^2 x - \sinh^2 x \equiv 1 \tag{2}$$

(b) find algebraically the exact solutions of the equation

$$2\sinh x + 7\cosh x = 9$$

giving your answers as natural logarithms.

(5)

(a)
LHS =
$$\cosh^2 \pi - \sinh^2 \pi = \left(\cosh x + \sinh hx\right) \left(\cosh x - \sinh hx\right)$$

$$= \left(\frac{e^{n} + e^{-n}}{2} + \frac{e^{n} - e^{-n}}{2}\right) \left(\frac{e^{n} + e^{-n}}{2} - \frac{e^{n} - e^{-n}}{2}\right)$$

$$=\frac{e^{n}+e^{n}+e^{-n}-e^{-n}}{2}\left(\frac{e^{n}-e^{n}+\bar{e}^{n}+e^{-n}}{2}\right)$$

$$= e^{x} \times e^{-x} = 1 = RHS$$
as
required.

(b) 251hhn +7coshn = 9

$$= e^{n} - e^{-n} + \frac{7}{2}e^{n} + \frac{7}{2}e^{-n} = 9$$

$$\frac{9}{2}e^{x} + \frac{5}{2}e^{x} = 9$$

$$e^{x} + 5e^{-x} = (8)$$

Question 3 continued

4. A non-singular matrix M is given by

$$\mathbf{M} = \begin{pmatrix} 3 & k & 0 \\ k & 2 & 0 \\ k & 0 & 1 \end{pmatrix}, \text{ where } k \text{ is a constant.}$$

(a) Find, in terms of k, the inverse of the matrix M.

The point A is mapped onto the point (-5, 10, 7) by the transformation represented by the matrix

$$\begin{pmatrix} 3 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

(b) Find the coordinates of the point A.

(3)

4(a). det (M) = 3(2) - k(k) = 6 -
$$k^2$$

$$C = \begin{pmatrix} +(2) & -(k) & +(-2k) \\ -(k) & +(3) & -(-k^2) \\ +(0) & -(0) & +(6-k^2) \end{pmatrix}$$

$$= \frac{1}{6 - \kappa^2} \begin{pmatrix} 2 & -\kappa & 0 \\ -\kappa & 3 & 0 \\ -2\kappa & \kappa^2 & 6 - \kappa^2 \end{pmatrix}$$

Question 4 continued

$$M^{-1} = \frac{1}{5} \begin{pmatrix} 2 & -1 & 0 \\ -1 & 3 & 0 \\ -2 & 1 & 5 \end{pmatrix}$$

$$MA = \begin{pmatrix} 5 \\ 10 \\ 7 \end{pmatrix}$$

$$M^{-1}MA = M^{-1}\begin{pmatrix} -5\\ 0\\ -7 \end{pmatrix}$$

$$A = \frac{1}{5} \begin{pmatrix} -20 \\ -25 \\ 55 \end{pmatrix}$$

5. Given that
$$I_n = \int_0^{\frac{\pi}{4}} \cos^n \theta \, d\theta, \qquad n \geqslant 0$$

(a) prove that, for $n \ge 2$,

$$nI_n = \left(\frac{1}{\sqrt{2}}\right)^n + (n-1)I_{n-2}$$
 (6)

(b) Hence find the exact value of I₅, showing each step of your working.

(5)

$$S(a). \quad I_n = \int_{-\infty}^{\pi/4} \cos^2 x \, dx = \int_{-\infty}^{\pi/4} \cos^2 x \, dx$$

Cos 271 +1

24-1

VI Cosn V=

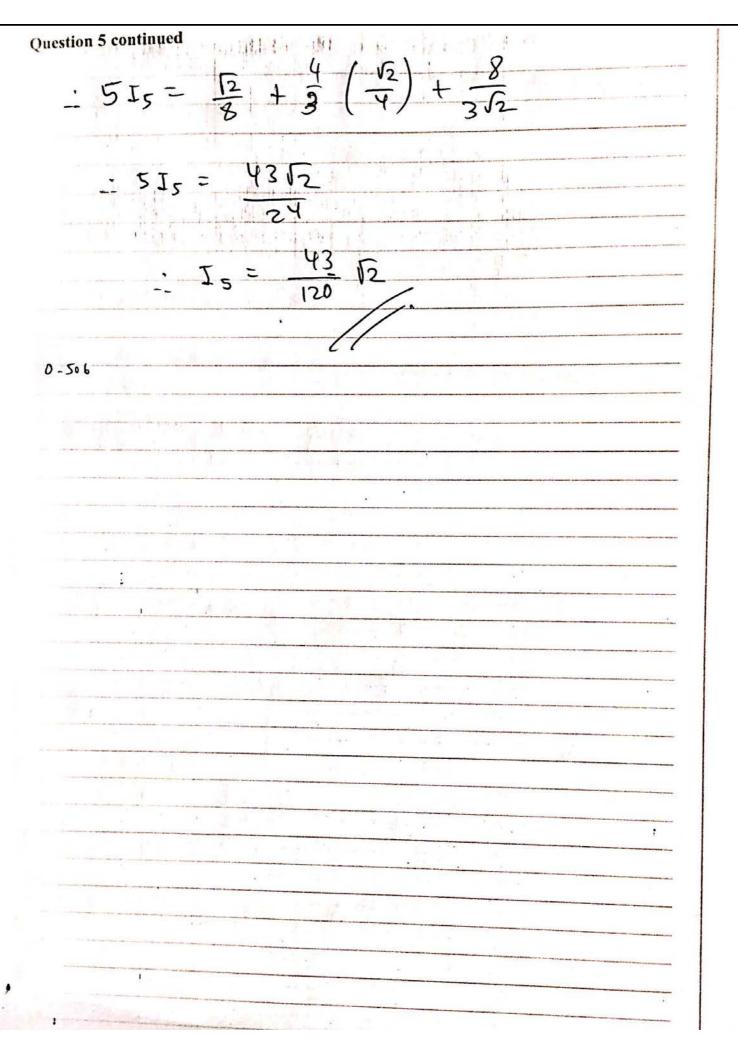
: In= [sinn cos x] + (n-1) sin2n cos n

Use rin2=1-cos2x

$$= I_n = \left(\frac{1}{\sqrt{2}}\right)^n + (n-1)\left(I_{n-2} - I_n\right)$$

$$I_{N} = \left(\frac{1}{2}\right)^{N} + (N-1)I_{N-2} - (N-1)I_{N}$$

$$\frac{1}{n} \prod_{n} = \left(\frac{1}{\sqrt{2}}\right)^{n} + (n-1) \prod_{n-2}$$


$$5I_5 = \left(\frac{1}{r_2}\right)^5 + 4I_3$$

$$43I_3 = \left(\frac{1}{\sqrt{2}}\right)^3 + 2I_1$$

$$I_1 = \int_0^{\pi/4} \cos n dn = \left[\sin n \right]^{\pi/4} = \frac{1}{\sqrt{2}}$$

$$-\frac{3}{3}I_{3} - \frac{1}{3}\left(\frac{1}{V_{2}}\right)^{3} + \frac{2}{3}\left(\frac{1}{V_{2}}\right)$$

$$5 I_{5} = \left(\frac{1}{\sqrt{2}}\right)^{5} + \frac{4}{3} \left(\frac{1}{\sqrt{2}}\right)^{3} + \frac{8}{3} \left(\frac{1}{\sqrt{2}}\right)$$

6. The hyperbola H has equation 19

$$\frac{x^2}{16} - \frac{y^2}{4} = 1$$

The line I is a tangent to H at the point P (4 $\cosh \alpha$, 2 $\sinh \alpha$), where α is a constant, $\alpha \neq 0$

(a) Using calculus, show that an equation for l is

$$2y \sinh \alpha - x \cosh \alpha + 4 = 0 \tag{4}$$

The line l cuts the y-axis at the point A.

(b) Find the coordinates of A in terms of α .

(2)

The point B has coordinates (0, $10 \sinh \alpha$) and the point S is the focus of H for which x > 0

(c) Show that the line segment AS is perpendicular to the line segment BS.

(5)

$$\frac{1}{y-2si^3hhd} = \frac{\cosh d}{2shhd} = \frac{2\cosh^2 d}{\sinh d}$$

$$\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^2 \right) = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^2 \right) + \frac{1}{2} \left(\frac{1}{2} \right)^2 \left(\frac$$

required

Scanned by CamScanner

7. The curve C has parametric equations

$$x=3t^2, \quad y=12t, \quad 0\leqslant t\leqslant 4$$

The curve C is rotated through 2π radians about the x-axis.

(a) Show that the area of the surface generated is

$$\pi(a\sqrt{5}+b)$$

where a and b are constants to be found.

(6)

(b) Show that the length of the curve C is given by

$$k \int_0^4 \sqrt{(t^2+4)} \, \mathrm{d}t$$

where k is a constant to be found.

(1)

(c) Use the substitution $t = 2 \sinh \theta$ to show that the exact value of the length of the curve C is

$$24\sqrt{5} + 12\ln(2 + \sqrt{5})$$

(6)

$$7(a)$$
. $2 = 3t^2$ $y = 12t$

$$\frac{\partial \hat{r}}{\partial t} = 6t$$
 $\frac{\partial \hat{r}}{\partial t} = 12$

$$S = 2\pi \int_{0}^{12t} \sqrt{36t^2 + 144} dt = \frac{1}{3} \pi \int_{0}^{4} 72t (36t^2 + 144)^{1/2} dt$$

$$= \frac{\pi}{3} \left[\frac{2}{3} \left(\frac{36t^2 + 144}{3} \right)^{\frac{3}{2}} \right]_{0}^{4}$$

$$=\frac{\pi}{3}\left(\frac{2}{3}(720)^{3/2}-1152\right)$$

$$= \frac{2 tt}{9} (12 \sqrt{5})^3 - 384 \pi$$

Scanned by CamScanner

Question 7 continued 271 x 1728 x 555 1920 55 # - 3844 1920 V5 -384) B 12281 t= 2sinho

Scanned by CamScanner

arsiN12=M (2+55)

Question 7 continued
$$= \left[2\left(\frac{1}{2}\sinh_{1}\ln\left[\frac{1}{2+\sqrt{5}}\right]^{2} + \ln\left(2+\sqrt{5}\right)\right)\right]$$

$$= \left[2\left(\frac{1}{4}\left(e^{\ln\left(2+\sqrt{5}\right)^{2}} - e^{-\ln\left(2+\sqrt{5}\right)^{2}}\right) + \ln\left(2+\sqrt{5}\right)\right]$$

$$= \left[3\left(8\sqrt{5}\right) + \left[2\ln\left(2+\sqrt{5}\right)\right]$$

$$= 24\sqrt{5} + 12\ln\left(2+\sqrt{5}\right)$$
as required.

(Total 13 marks)

 $r = (2i + j - 2k) + \lambda(3i + 2j + k)$, where λ is a scalar parameter,

and the plane Π has equation

$$\mathbf{r.(i+j-2k)} = 19$$

(a) Find the coordinates of the point of intersection of l and Π .

(4)

The perpendicular to Π from the point A (2, 1, -2) meets Π at the point B.

(b) Verify that the coordinates of B are (4, 3, -6).

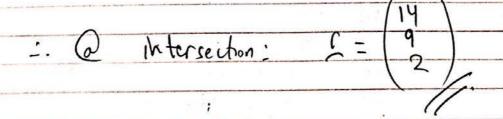
(3)

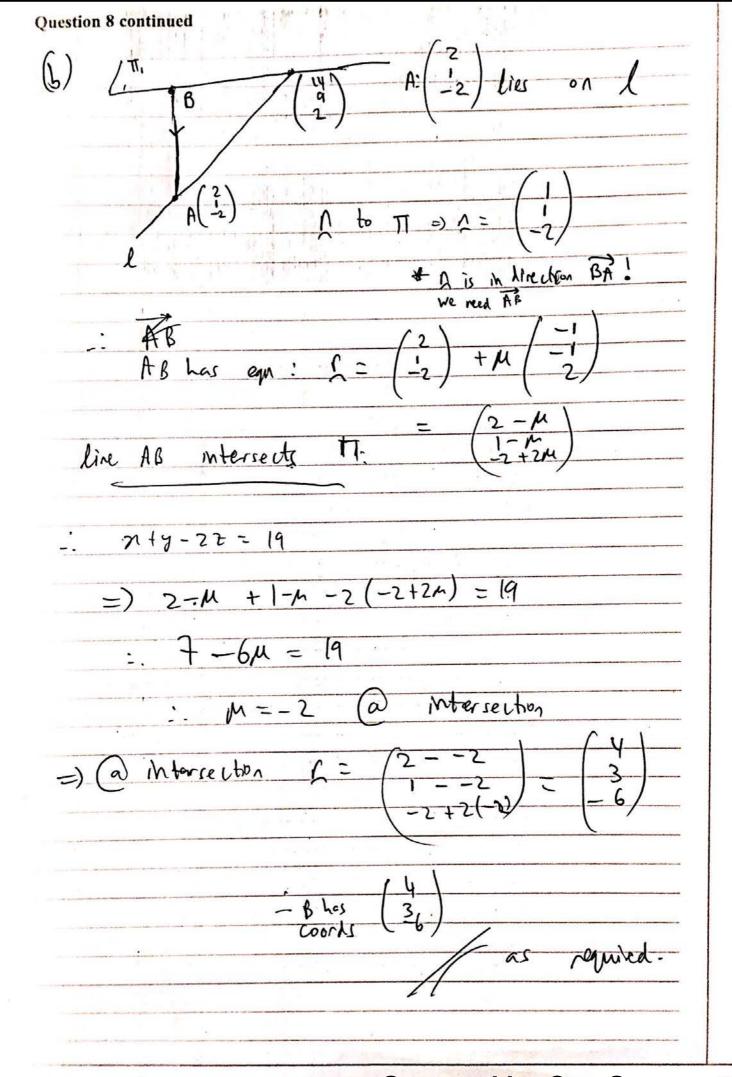
The point A(2, 1, -2) is reflected in the plane Π to give the image point A'.

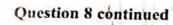
(c) Find the coordinates of the point A'.

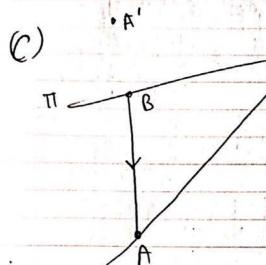
(2)

(d) Find an equation for the line obtained by reflecting the line l in the plane Π , giving your answer in the form

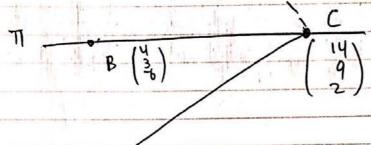

$$\mathbf{r} \times \mathbf{a} = \mathbf{b}$$


where a and b are vectors to be found.


(4)


$$\ell: \quad \zeta = \begin{pmatrix} 2+3\lambda \\ 1+2\lambda \\ -2+\lambda \end{pmatrix}$$

$$-1.$$
 $2+3\lambda + 1+2\lambda - 2(-2+\lambda) = 19$


$$\therefore A' = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} + 2 \begin{pmatrix} 4 \\ 3 \\ -6 \end{pmatrix} - \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$$

$$= \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} + 2 \begin{pmatrix} 2 \\ 2 \\ -4 \end{pmatrix}$$

$$A' = \begin{pmatrix} 6 \\ 5 \\ -10 \end{pmatrix}$$

Let
$$C = \begin{pmatrix} q \\ q \\ 2 \end{pmatrix}$$

$$\overrightarrow{A'C} = \begin{pmatrix} 14 \\ 9 \\ 2 \end{pmatrix} - \begin{pmatrix} 6 \\ 5 \\ -10 \end{pmatrix} - \begin{pmatrix} 8 \\ 4 \\ 12 \end{pmatrix}$$

$$(\underline{\Gamma} - \underline{\alpha}) \times \underline{b} = 0$$

$$\vdots \quad \underline{r} \times \underline{b} = 0$$

$$\therefore \quad \mathcal{L} \times \begin{pmatrix} 8 \\ 4 \\ 12 \end{pmatrix} = \begin{pmatrix} 6 \\ 5 \\ -10 \end{pmatrix} \times \begin{pmatrix} 8 \\ 4 \\ 12 \end{pmatrix} = \begin{pmatrix} 100 \\ -152 \\ -16 \end{pmatrix}$$

$$\therefore \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array}\\ \end{array}\\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} 25 \\ -38 \\ -4 \end{array} \end{array} = \begin{array}{c} \begin{array}{c} 25 \\ -38 \\ -4 \end{array} \end{array} = \begin{array}{c} \begin{array}{c} 25 \\ -38 \\ -4 \end{array} \end{array}$$

Scanned by CamScanner₂₇